
ASAP: A Speculative Approach to Persistence

1. Motivation
Persistent memory (PM) enables recoverable applications that
can preserve in-memory data structures across system reboots
and power failures. Correct recovery of these applications
require crash consistency which constraints the order of writes
to persistent memory. While programs could update data in
the correct order, the cache hierarchy in modern systems may
re-order the writes to persistent memory. Developers could
use flush and fence instructions in current systems to
ensure that writes reach memory in the required order. How-
ever, these instructions incur long stalls in today’s systems.
Past studies [6] have shown that these long stalls can cause
slowdowns upto 7× in applications with frequent ordering.

2. Limitations of the State of the Art
Several proposals have aimed to reduce the high cost of order-
ing either by entrusting the caches to enforce ordering [5] or
use buffering [1, 2, 3, 6, 8] or through speculation [4]. Most
of these designs fall short when 1) ordering persists across
threads and 2) ordering across multiple memory controllers.
Handling cross-thread dependencies. Crash consistency for
multi-threaded workloads require ordering of writes across
threads. WHISPER workload analysis [8] found that applica-
tions had few dependencies across threads (cross-thread de-
pendencies), where one thread persists data recently accessed
by another thread. We found that cross-thread dependencies
are frequent in newer high-performance concurrency-aware
data structures designed for PM [7, 9].

Assuming infrequent cross-thread dependencies, prior de-
signs employ conservative flushing to handle such dependen-
cies. They stall flushing in the dependent thread until the
source thread’s persists completes. Figure 1b depicts the prob-
lem, writes in epoch1 E1,1 of thread T1 are not flushed until
source thread T2 completes flushing epoch E2,0. For instance,
the buffers in HOPS [8] are unable to flush their writes for
about 26% of the time on average. Such frequent stalls cause
the finite buffers to fill up and exert back-pressure on the core
pipeline, ultimately stalling the processor.
Multi memory-controller systems. Having multiple memory
controllers in a single processor is common for server-class
processors such as Intel Xeon. Enforcing ordering requires
ensuring that writes are ordered correctly across multiple con-
trollers. Writes at one controller may have to wait for writes
to arrive and complete at another controller.

Some of the previously proposed designs either do not do
not support multiple memory controllers [4, 6] and the other

1An epoch is a group of writes that don’t have ordering dependencies
among themselves. However, writes in different epochs are ordered.

designs that do support are inefficient [2, 3, 8]. These designs
wait for writes in the current epoch to be persisted before flush-
ing writes from later epochs to different controllers. Figure 1a
illustrates this case where writes to MC 2 are not flushed until
writes in the first epoch are persisted by MC 1. By using
such conservative flushing strategies, these designs fail to fully
utilize the available system bandwidth.

3. Design Overview

We propose ASAP which aims to improve performance of
write ordering by avoiding flushing stalls in a multi memory
controller system with frequent cross-thread dependencies.
ASAP is a buffered persistency system that uses a separate
data path for persisting writes to PM. Writes are queued in a
hardware buffer called persist buffer and are flushed from this
buffer to the memory controller.

Since crashes are rare compared to the frequency of persist
ordering events, ASAP takes an optimistic approach to flush-
ing writes. Unlike previous designs, buffers in ASAP flush all
writes as soon as possible (ASAP) as shown in Figure 1c. We
call this eager flushing. In turn, the memory controllers update
memory speculatively with values from the eagerly flushed
writes. Memory controllers maintain recover information to
unroll the speculative updates in case of a crash.

Eager flushing. ASAP speculates that writes from earlier
epochs will eventually become durable, so it eagerly flushes
writes from later epochs. ASAP differentiates between writes
in current flushing epoch and writes in future epochs. When
ASAP flushes a write in a future epoch, it marks the write
as early. This way, ASAP overlaps flushes from different
epochs going to different memory controllers and uses the
total available write bandwidth more efficiently.

Speculative updates to memory. When a memory controller re-
ceives an early flush, it speculatively updates memory. The sys-
tem might crash after a speculative update (mis-speculation)
and leave memory in an inconsistent state. To handle this,
ASAP saves recovery information in the memory controller
before speculatively persisting the write. Specifically, it cre-
ates an undo record for the speculatively updated address by
reading the value from memory before updating it. If the sys-
tem crashes, ASAP reverts the state of memory using the undo
record in the memory controller.

Crash handling. ASAP leverages Intel’s Asynchronous
DRAM Refresh (ADR) technology to save recovery infor-
mation (undo records) in the memory controller. On failure,
memory controllers are notified of a pending shutdown. Mem-
ory controllers write the values in the undo records to memory,
thereby unwinding the effects of speculative updates. By undo-
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(a) Conservative flushing in a multi memory-
controller system
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(b) Conservative flushing with cross-thread de-
pendencies
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(c) Eager flushing in ASAP enables dependent
threads to flush concurrently

Figure 1: Conservative flushing in earlier designs versus eager flushing in ASAP

Figure 2: Performance study

ing the speculative updates, memory is restored to a consistent
recoverable state.

To support the above design, ASAP uses new structures:
persist buffers to buffer writes going to PM, epoch tables to
store metadata about on-going epochs and recovery tables in
the memory controllers to store undo information.

4. Key Results
We implemented and evaluated ASAP using full-system simu-
lations on gem5. We simulated a modern multi-processor with
2 memory controllers and modelled PM characteristics based
on real world studies on Intel Optane. We evaluated ASAP
on a wide range of benchmarks including workloads from the
WHISPER [8] suite, data structures using ATLAS framework
and highly concurrent data structures designed for PM.
Performance study. We compare the performance of ASAP
to 1) Intel baseline, 2) HOPS [8], and 3) BBB [1] which has
performance close to eADR. Figure 2 shows the performance
comparison of a 4-core system. On average, ASAP offers a
speedup of 2.3× over baseline. The baseline stalls frequently
as the CPU waits for the cache flushes to complete.

ASAP improves performance by 22.8% on average over
HOPS. The performance improvement over HOPS is signif-
icant for applications with high cross-thread dependencies
as this leads to frequent flushing stalls in HOPS. Instead of
stalling, ASAP flushes writes early, making space in the persist
buffer for newer writes.

ASAP performs very close to a system with eADR, on aver-
age within 3.9%. Stalls are very rare in ASAP and they only
occur when applications want to ensure durability after certain
operations (durability fences). Unlike eADR and BBB [1],
ASAP does not require a battery to backup the caches or the
persist buffers. ASAP requires minimal data in the memory
controller to be flushed in case of power failures.
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Figure 3: Bandwidth utilization

System bandwidth utilization. Eager flushing and speculative
memory updates enable better overlap of work across memory
controllers. We ran a custom bandwidth micro-benchmark
that issues writes separated by a fence and alternating across
2 MCs. The results of the experiment are plotted in Figure 3.
HOPS fails to utilize the system bandwidth efficiently while
ASAP performs 2x better than HOPS on average.
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