
RRAM-ECC: Improving Reliability of RRAM-Based
Compute In-Memory

Zishen Wan∗1, Brian Crafton∗1, Samuel Spetalnick1, Jong-Hyeok Yoon2, Arijit Raychowdhury1
1School of Electrical and Computing Engineering, Georgia Institute of Technology, Atlanta, USA

2Department of Electrical Engineering and Computer Science, DGIST, Daegu, Korea
{zwan63, bcrafton3, sspetalnick3}@gatech.edu, jonghyeok.yoon@dgist.ac.kr, arijit.raychowdhury@ece.gatech.edu

∗Equal Contributions

Abstract—Compute in-memory (CIM) is an exciting technique
that minimizes data transport, maximizes memory throughput,
and performs computation on the bitline of memory sub-arrays.
This is especially interesting for machine learning applications,
where increased memory bandwidth and analog domain compu-
tation offer improved area and energy efficiency. Unfortunately,
CIM faces new challenges traditional CMOS architectures have
avoided. In this work, we explore the impact of device variation
(calibrated with measured data on foundry RRAM arrays) and
propose a new class of error correcting codes (ECC) for hard
and soft errors in CIM. We demonstrate single, double, and triple
error correction offering up to 16,000× reduction in bit error rate
over a design without ECC and over 427× over prior work, while
consuming only 29.1% area and 26.3% power overhead.

I. INTRODUCTION

RRAM is a promising candidate for compute in-memory
(CIM) applications due to its multiply-and-accumulate structure
in 1T-1R bitcell, non-volatile, high density, and process compat-
ibility [1]. These properties seek to advance machine learning
applications with higher throughput and bit-density. Despite
these benefits, both CIM and RRAM face several challenges
not before faced by traditional CMOS designs. Due to process,
temperature, and write-to-write variations, the resistive state of
RRAM undergoes both spatial and temporal variations, which
is further exacerbated by the desired low voltage. CIM read
out multiple rows simultaneously by accumulating current on
the same bitline (BL). Therefore, CIM inherently has higher
bit error rate (BER) than traditional memory arrays reading
one wordline (WL) at a time. Traditional ECC cannot protect
CIM because errors in multi-level outputs cannot be localized.
Existing efforts to reduce CIM error impact use iterative write-
verify [2] that requires high write energy with reduced en-
durance, or variation-aware training [3] that has low generality
with high training cost, or arithmetic codes [4] that protect CIM
additive syndromes but cannot identify error location.

To mitigate the impact of RRAM CIM errors, our paper
makes three major contributions that will likely have long-
term impact on both academia and industry. (1) We propose a
new class of ECC scheme, CIM-SECDED, for hard and soft
errors in CIM and compatible with any number of parallel
row accesses. (2) We propose a general technique Successive
Correction for error correction. Combined with CIM-SECDED,
we achieve single, double, and triple error correction in CIM
for the first time, and demonstrate good scalability. (3) We
evaluate the proposed ECC scheme on a 40nm foundry RRAM
test-chip array, and achieve over 16,000× BER reduction while
consuming only 29.1% area and 26.3% power overhead.

All the details can be found in [5] and [6].

Fig. 1: 256×320 RRAM array. 8 adjacent cells form an 8-bit weight
and share a 3-bit ADC through a 8-to-1 multiplexer. Shift and add
logic accumulate partial sums and apply corresponding magnitude.

II. CHARACTERIZATION AND DESIGN METHODOLOGY

Characterizing RRAM Device Variation. The key obstacle
to enabling CIM is cell-to-cell variation. Multi-row read signif-
icantly increases error chances due to accumulated variation
from the same BL. To quantify this error rate, we collect data
from a recent 40nm foundry RRAM test-chip [7]. We randomly
program the cells with uniform value distribution (0-8 LRS) and
perform multi-row read. We observe that when #LRS cell is low
(<4) the ADC output is always correct in 8192 samples. When
more LRS cells are read, errors occur with increasing frequency.
However, we note that errors are always constrained to ±1
errors. This observed property has special implications for both
error correction and detection. Like traditional SECDED, a ±1
can be detected and localized using a hamming code.

CIM-SECDED Scheme. Based on the characterization, we
propose CIM-SECDED, a single error correction double error
detection (SECDED) scheme compatible with CIM for any
number of parallel row accesses. Fig. 2a shows the encoding,
decoding, and correction steps for CIM-SECDED. The example
uses a (4, 3) hamming code for each row and requires 2 bits
for double error detection and sign detection (±1). Compared to
traditional SECDED, CIM-SECDED requires only 1 additional
bit for sign detection. After the error is localized and checked,
the sign of the error is computed using the checksum. The sign
is obtained using a LUT (off-chip) containing various possible
outcomes. Lastly, the address is decoded and the error is applied
to the victim ADC output. For most CIM applications encoding
can be done off-chip, and only decoding is required on-chip.

Successive Correction by Detection. To effectively correct
errors while maintaining high performance, we propose Succes-
sive Correction by Detection. Upon error detected during CIM,
we re-read the WLs leading to the error at fewer WLs/cycle.
Fig. 2b shows an example of Successive Correction. We pad



(a) (b) (c)
Fig. 2: (a) Example of CIM-SECDED. (b) Example of Successive Correction. (c) Evaluation of classification accuracy, BER, and normalized
performance versus cell-to-cell variation (σLRS/µLRS) for ResNet18 on ImageNet.

each word with a parity bit that is read and accumulated on
WL during CIM. The error is detected by comparing parity
bit with ADC outputs. Upon detecting the error, correction
is performed by re-reading WLs where we recursively break
down WLs in 2 sets. Soft errors are typically corrected after
the first recursion. Hard errors can be quickly localized along
one branch and minimize WLs re-reading time. This technique
is especially powerful when many WLs are enabled (≥32).

Double Error Correction. To further enhance the correction
capability, Successive Correction is paired with CIM-SECDED
to enable both double error correction (DEC) and triple error
correction (TEC) after detection. Upon double error detection
during CIM-SECDED, Successive Correction is performed. At
each recursive step, SECDED is performed and continues until
only 1 WL is enabled. This scheme can perform DEC for
all 2-error syndromes. By enabling more detection capability,
Successive Correction can provide greater correction capability.

Triple Error Correction. Triple error detection (TED) can
be used to implement TEC with Successive Correction. Because
SECDED has a hamming distance of 4, it can also be used
for TED. Using Successive Correction, this code can be used
to correct 3 errors. Instead of decoding syndromes as 1-error
or 2-error like SECDED, TED simply detects any non-zero
syndrome as an error. During CIM, SECDED is used to perform
TED. Upon error detection, Successive Correction is performed.
At each recursive step, TED is again performed and the process
continues until only 1 WL is enabled. If only 1 WL is enabled,
then SECDED is performed so errors can be corrected. DEC
and TEC share the same decoder in hardware implementation.

III. IMPLEMENTATION AND EVALUATION RESULTS

Hardware Implementation. To architect our ECC permu-
tations, we consider the 256×256 RRAM macro [7] used for
characterization (Fig. 1). Using measured area and power from
RRAM macro as baseline, we evaluate each ECC scheme by
synthesizing RTL implementation. Arithmetic code [4] incurs
70.9% area and 66.1% power overhead. In contrast, our pro-
posed SEC, CIM-SECDED (DEC), TEC incurs 3.3%, 29.0%,
29.1% area overhead and 3.2%, 26.3%, 26.2% power overhead.

Simulation Framework. To evaluate the performance, BER,
and accuracy of each ECC scheme, we construct a cycle-
accurate simulator capable of executing tensor operations using
CIM with non-idealities based on our measured data. We
embed performance counters in ADC and sub-array objects to

track cycles, errors, and ECC events. As output, the simulator
produces a table with performance counters and all intermediate
layer activations that are verified against a TensorFlow design.

Soft Error and Hard Error Evaluation. For soft error, we
evaluate over the measured LRS variation (Fig. 2c). DEC and
TEC yield the lowest BER for all cases. Arithmetic codes [4]
yield lower performance and higher BER than DEC and TEC
due to its high overhead on 8-bit operations. At 4% LRS vari-
ation (1.7V), TEC achieves 14.9× BER reduction and 27.8%
speedup over arithmetic codes. At 6% LRS variation (1.5V),
TEC achieves 427.1× BER reduction and 23.2% speedup over
arithmetic code. For hard error, we sweep over Stuck-at-Fault
(SAF) rate. For lower SAF rates (10−6), DEC and TEC yield
58.9× and 280.4× better lower BER than arithmetic code while
achieving 29% better performance. ECC can greatly reduce
BER and thus we can enable more parallel WLs while achieving
the same BER. We find that TEC can enable 32 WLs at lower
BER than 8 WLs with no ECC. At 3.5% variation, we observe
a 2.32× speedup and >200× reduction in BER. Thus TEC
can achieve higher peak performance for a given BER over the
range of variation on our 40nm foundry RRAM array.

Generability and Scalability. Our CIM-SECDED + Succes-
sive Correction approach can be generalized in other memory
and error distribution. Beyond RRAM, it can be used for
PCM, MRAM-based CIM, and results will depend on SAF and
variation. Beyond normal distribution in our measured RRAM
data, our method can be applied to other error distributions
(e.g., log-normal). Our approach is scalable in that can enable
any #WLs, correct >3 errors, and protect arbitrary sized data
blocks like standard SECDED codes (e.g., 32/7, 64/8).

REFERENCES

[1] S. Yu et al., “Compute-in-memory chips for deep learning: Recent trends
and prospects,” IEEE Circuits and Systems Magazine, 2021.

[2] J. Wu et al., “A 40nm low-power logic compatible phase change memory
technology,” in IEDM, 2018.

[3] Y. Long et al., “Design of reliable dnn accelerator with un-reliable reram,”
in DATE, 2019.

[4] B. Feinberg et al., “Making memristive neural network accelerators reli-
able,” in HPCA, 2018.

[5] B. Crafton et al., “Cim-secded: A 40nm 64kb compute in-memory rram
macro with ecc enabling reliable operation,” in A-SSCC, 2021.

[6] B. Crafton et al., “Improving compute in-memory ecc reliability with
successive correction,” in DAC, 2022.

[7] S. Spetalnick et al., “16.2 a 40nm 64kb 26.56tops/w 2.37mb/mm2 rram
binary/compute-in-memory macro with 4.23× improvement in density and
>75% use of sensing dynamic range,” in ISSCC, 2022.


	Introduction
	Characterization and Design Methodology
	Implementation and Evaluation Results
	References

