
PMEM-Spec:
Persistent Memory Speculation
(Strict Persistency Can Trump Relaxed Persistency)

Jungi Jeong and Changhee Jung
Purdue University

Session 6A: Hardware for Crash Consistency
NVMW 2021

Executive Summary
• Persistency Model: defines persist-orders for failure-recovery

• Challenge for strict persistency slow!
• (In general) the more relax, the better performance
• But relaxing increases programming difficulty

(like memory consistency)

•
• HW/SW codesign for strict persistency
• 10%~27% speedup compared to relaxed persistency
• First demonstration of strict persistency outperforming

relaxed persistency

2

Persistent Memory Speculation

Persistency Model

Persistent Memory (PM) is Here!
• User-space access to Non-Volatile Memory

• Enables recoverable applications

3

Intel Optane DC PMM

PM Programming Challenges

• PM Stores must be:

: via write-ahead logging*

or shadow paging**

or idempotent processing$

(a.k.a. persist-order)
: flush & fence instructions

4

Core

DRAM
Ctrl.

Shared Cache

PM
Ctrl.

Core

L1-$ L1-$

PMDRAM

Persistence Domain

Atomic

Ordered

* ASPLOS 2011, ASPLOS 2016, ASPLOS 2017, EuroSys 2017

** ASPLOS 2020

Target of This Study

…

…

$ MICRO 2018

PM Store Ordering – Strict Persistency

5

DRAM
Ctrl.

PM
Ctrl.

PMDRAM

Log A

Log B

Data A

Data B

Ex)

Flush & Fence

Flush & Fence

Flush & Fence

Flush & Fence

Flush & Fence
for each PM store

Core Core

L1-$

…

…

Minimal
programming

burden
(compiler-support)

L1-$

Shared Cache

PM Store Ordering – Relaxed Persistency

6

DRAM
Ctrl.

Shared Cache

PM
Ctrl.

PMDRAM

Flush & Fence
per epoch

Core Core

L1-$ L1-$

…

…

Programming
Difficulty
(programmer
intervention)

Log A
Log B

Data A
Data B

Ex)

Flush & Fence

Flush & Fence

PM Store Ordering – Relaxed Persistency

7

DRAM
Ctrl.

Shared Cache

PM
Ctrl.

PMDRAM

Flush & Fence
per epoch

Core Core

L1-$ L1-$

…

…

Programming
Difficulty
(programmer
intervention)

Log A
Log B

Data A
Data B

Ex)

Flush & Fence

Flush & Fence

Log A

Log B

Data A

Data B

Flush & Fence

Flush & Fence

Flush & Fence

Flush & Fence

Strict Persistency
 no programming hassle but slow
Relaxed Persistency
 fast but programmer intervention

Related Work*: FENCE Overheads

8

#1. Reducing FENCE costs

#2. Reducing # of FENCEs

[MICRO 2016] & [ASPLOS 2017]
• Hiding fence latency
• Delegating the persist-order

to HW

DRAM
Ctrl.

Shared Cache

PM
Ctrl.

PMDRAM

Core Core

L1-$ L1-$

…

…

* [MICRO2016], [ASPLOS2017], [ISCA2020], [MICRO2020]

Related Work*: FENCE Overheads

9

[MICRO 2016] & [ASPLOS 2017]
• Hiding fence latency
• Delegating the enforcement

to HW

[ISCA 2020]
• Further relaxing constraints

[MICRO 2020]
• Multiple store paths to PM

DRAM
Ctrl.

Shared Cache

PM
Ctrl.

PMDRAM

Core Core

L1-$ L1-$

…

…

#1. Reducing FENCE costs

#2. Reducing # of FENCEs

* [MICRO2016], [ASPLOS2017], [ISCA2020], [MICRO2020]

Related Work*: HW Complexity

10

DRAM
Ctrl.

Shared Cache

PM
Ctrl.

PMDRAM

Core Core

L1-$ L1-$

…

…PB PB
Coherence engine

Intra-thread Persist-Order

: governs cache-flush orders
based on persistency model

Cache-coherence extensions

* [MICRO2016], [ASPLOS2017], [ISCA2020], [MICRO2020]

: detects inter-thread dependency

L1-$-side Buffers (PBs)

Inter-thread Persist-Order

Control Persist-Orders in Private L1-Caches

Related Work*: Challenge

11

DRAM
Ctrl.

Shared Cache

PM
Ctrl.

PMDRAM

Core Core

L1-$ L1-$

…

…PB PB
Coherence engine

B
F

: PB Flush must happen before
L1-writeback for a given block

▪ [MICRO2016]
: cache-coherent PBs
▪ [ASPLOS2017]
: sticky-bit in LLC for tracking &
bloom-filter in PM controllers
for checking pending persists in PBs
▪ [ISCA2020] & [MICRO2020]
: buffer L1-writeback

* [MICRO2016], [ASPLOS2017], [ISCA2020], [MICRO2020]

L1$-writeback vs. PB Flush

Prior approaches:
(1) increase HW complexities

(2) incur extra latency

Solutions of Prior Works

PMEM-Spec: Persistent Memory Speculation

12

DRAM
Ctrl.

Shared Cache

PM
Ctrl.

PMDRAM

Core Core

L1-$ L1-$

…

…PB PB
Coherence engine

B
F

Caches
Unmodified

Minimal HW changes

Minimal Program Changes
(like Strict Persistency)

S
B

HW/SW Codesign for
High Performance Strict Persistency

PMEM-Spec Key Ideas

13

DRAM
Ctrl.

Shared Cache

PM
Ctrl.

PMDRAM

Core Core

L1-$ L1-$

…

…

S
B

#2. Detect ordering violation
(Misspeculation) in HW

#1. Speculate PM Accesses

#3. Recover from
Misspeculation in SW

With failure-atomic SW
as virtual power failure

With Separated
load/store paths to PM

With Arch/Comp interaction

Separated Load/Store Paths to PM

14

DRAM
Ctrl.

Shared Cache

PM
Ctrl.

PMDRAM

Core Core

L1-$ L1-$

…

…

S
B

Persist-path:
FIFO store path to PM

Connect SQ to NVM
Bypass caches
Drop cache writebacks

Regular-path:
Data path through caches
Serves NVM reads only

What does PMEM-Spec Speculate?

15

PM

Core

PM

Core

Caches

Core

Load Speculation Store Speculation

: PM load must read
latest value from PM

: PM stores must arrive
in the correct order

Ld

St St St

Watch Out for Ordering Violation (Misspeculation)!

Caches

Core

Load Misspeculation
• Symptom: stale reads

• If prior stores are pending in the persist-path
• Cause: latency differences in separated load/store paths

16

Core

PM Ctrl.

St A Ld A

Caches A

Regular-path Persist-path

Evict

Pending

Fetch

Stale read:
Memory consistency violation

Speculate

A

Detecting Load Misspeculation
• Observation: if blocks in caches, loads never misspeculate
• Key idea: monitoring recently evicted blocks

• For whether they are overwritten by stores

17

Core

PM Ctrl.

St A Ld A

Caches A

Regular-path Persist-path

Evict

Pending

Fetch

A

Speculate

Stale Read!

Q. How long should we monitor?

Benign Load

Monitor A

Misspeculation
Detected

Cache Hit!

• Monitor evicted blocks until the worst-case persist latency
• Fixed in the HW design time*

•
• Starts on LLC-eviction of dirty blocks (not updating PM data)
• If blocks being fetched & overwritten within the window,

the fetch was stale

Detecting Load Misspeculation

18

Core

PM Ctrl.

St A Ld A

Caches A A
Evict

Worst-case*

Regular-path Persist-path Speculation window

Best-case*

Speculation Window

Misspeculation
Detected

Fetch

* Best & worst persist-path latencies are determined in HW design time based on HW specification.

Monitor A

Store Misspeculation
• Cause: inter-thread dependency

• Stores to the same address
from multiple threads

• Symptom: out-of-order
persists

19

PM

Core

Caches

CoreSt StSt St

Thread 0
…
St A
…

Thread 1
…
St A
…

Do not leverage
cache-coherence

Happens-before order

Q. How to capture
the store-order

between threads?
(without cache-coherence)

Detecting Store Misspeculation
• Data-Race-Free (DRF) programs

• Inter-thread dependency always
happens in critical sections

• Observation:

• To convey critical section execution order to HW
•

: global-counter incremented when entering critical section
• Arriving lower IDs after higher IDs out-of-order arrivals
• New instructions to assign/revoke the speculation ID to a thread

(spec-assign / spec-revoke)

20

Thread 0
…
St A
…

Thread 1
…
St A
…

Thread 0
Lock
St A
Unlock

Thread 1
Lock
St A
Unlock

Critical section execution order
== Inter-thread store-order

Speculation ID

Thread 0
Lock
spec-assign
St A
spec-revoke
Unlock

Thread 1
Lock
spec-assign
St A
spec-revoke
Unlock

No Programmer Annotation
(compiler-generated codes)

Speculation ID Ex) Benign Store

21

Thread 0
Lock
spec-assign
St A
spec-revoke*
Unlock

Thread 1
Lock
spec-assign
St A
spec-revoke*
Unlock

PM

Core

Caches

CoreSt StSt St

Spec-ID: 100

100

A: 100

Spec-ID: 101
101

Both stores are benign

* PMEM-Spec untags the speculation ID when exiting critical sections. Please refer to the paper for details.

Speculation ID Ex) Out-of-Order Persists

22

Thread 0
Lock
spec-assign
St A
spec-revoke*
Unlock

Thread 1
Lock
spec-assign
St A
spec-revoke*
Unlock

PM

Core

Caches

CoreSt StSt St

Spec-ID: 100

100

Spec-ID: 101
101

A: 101

Out-of-Order Persists!

* PMEM-Spec untags the speculation ID when exiting critical sections. Please refer to the paper for details.

Misspeculation Recovery

23

OS

PM

Apps
User

Space

Kernel
Space

Devices

Runtime

PMEM-Spec
Architecture

If Misspeculation detected,
interrupt the OS

(e.g., synthetic power failure)

Failure-atomic runtime
aborts & re-executes TXs

(e.g., Mnemosyne [ASPLOS11], PMDK,
iDO [MICRO18])

Misspeculation Recovery

24

OS

PM

Apps
User

Space

Kernel
Space

Devices

Runtime

PMEM-Spec
Architecture

If Misspeculation detected,
interrupt the OS

(e.g., synthetic power failure)

Failure-atomic runtime
aborts & re-executes TXs

(e.g., Mnemosyne [ASPLOS11], PMDK,
iDO [MICRO18])PMEM-Spec recovers from misspeculation

with recovery protocols of failure-atomic SW
by treating it as virtual power failure

Methodology
• Full system simulation with gem5

• Linux kernel version: 4.8.13
• Ubuntu 16.04

• Comparing schemes
• Intel X86 (baseline): Epoch Persistency
• DPO [MICRO’16]: Strict Persistency
• HOPS [ASPLOS’17]: Epoch Persistency
• PMEM-Spec: Strict Persistency

Processor 8-core, OoO, 2GHz, x86
L1 I/D cache Private, 32/64KB, 4-way, 2ns
L2 cache Shared, 16MB, 16-way, 20ns
PM Controller 32/64-entry read/write queue
PM Read: 175ns, write: 94ns
Persist-Path 20ns

Microbench Concurrent Queue,
Array Swap,
HashMap,
RB-Tree, TATP, TPCC

WHISPER* Vacation, Memcached

• Benchmarks

25

* S. Nalli et al., ASPLOS 2017.

Evaluation – Throughput
• Microbenchmarks: similar to HOPS (Epoch Persistency)

• Tiny transactions less room for speculation

• WHISPER: significantly outperforms previous works
• Larger transactions advent speculation opportunities

26

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

ArraySwap Queue HashMap RB-Tree TATP TPCC Vacation Memcached
(r50w50)

Memcached
(r10/r90)

Memcached
(r90/w10)

Th
ro

ug
hp

ut

IntelX86 DPO HOPS PMEM-Spec

Hi
gh

er
 is

 B
et

te
r

Microbenchmarks WHISPER

Evaluation – Persist-Path Latency
• Persist-path operations are mostly out of critical paths
• Only at the end of TXs, the persist-path must be drained

27

0.8

0.9

1

1.1

1.2

1.3

20ns 40ns 60ns 80ns 100ns

Th
ro

ug
hp

ut
(N

or
m

al
ize

d
to

 In
te

l X
86

)

Persist-Path Latency

HOPS PMEM-Spec

Hi
gh

er
 is

 B
et

te
r

Evaluation – Persist-Path Latency
• Persist-path operations are mostly out of critical paths
• Only at the end of TXs, the persist-path must be drained

28

0.8

0.9

1

1.1

1.2

1.3

20ns 40ns 60ns 80ns 100ns

Th
ro

ug
hp

ut
(N

or
m

al
ize

d
to

 In
te

l X
86

)

Persist-Path Latency

HOPS PMEM-Spec

Hi
gh

er
 is

 B
et

te
r

More in the paper:
- Speculation buffer in the PM controller
- Runtime & OS Support for PMEM-Spec
- Scalability analysis
- More sensitivity analysis

…

Conclusion:
• HW (speculation) / SW (recovery) codesign for persist-order

• With separated load/store paths to PM,
Misspeculation is extremely rare

• Leading to high performance
strict persistency outperforming
relaxed persistency

29

OS

PM

Apps
User

Space

Kernel
Space

Devices

Runtime

PMEM-Spec
Architecture

Persistent Memory Speculation

PMEM-Spec:
Persistent Memory Speculation
(Strict Persistency Can Trump Relaxed Persistency)

Jungi Jeong and Changhee Jung
Purdue University

Session 6A: Hardware for Crash Consistency
NVMW 2021

	PMEM-Spec:�Persistent Memory Speculation�(Strict Persistency Can Trump Relaxed Persistency)
	Executive Summary
	Persistent Memory (PM) is Here!
	PM Programming Challenges
	PM Store Ordering – Strict Persistency
	PM Store Ordering – Relaxed Persistency
	PM Store Ordering – Relaxed Persistency
	Related Work*: FENCE Overheads
	Related Work*: FENCE Overheads
	Related Work*: HW Complexity
	Related Work*: Challenge
	PMEM-Spec: Persistent Memory Speculation
	PMEM-Spec Key Ideas
	Separated Load/Store Paths to PM
	What does PMEM-Spec Speculate?
	Load Misspeculation
	Detecting Load Misspeculation
	Detecting Load Misspeculation
	Store Misspeculation
	Detecting Store Misspeculation
	Speculation ID Ex) Benign Store
	Speculation ID Ex) Out-of-Order Persists
	Misspeculation Recovery
	Misspeculation Recovery
	Methodology
	Evaluation – Throughput
	Evaluation – Persist-Path Latency
	Evaluation – Persist-Path Latency
	Conclusion:
	PMEM-Spec:�Persistent Memory Speculation�(Strict Persistency Can Trump Relaxed Persistency)

