PMEM-Spec:
Persistent Memory Speculation

(Strict Persistency Can Trump Relaxed Persistency)

Jungi Jeong and Changhee Jung
Purdue University

Session 6A.: Haraware for Crash Consistency
NVMW 2021

PURDUE

UNIVERSITY.

Department of Computer Science

Executive Summary

o S\ lele =1 defines persist-orders for failure-recovery

 Challenge for strict persistency =» slow!
 (In general) the more relax, the better performance

« But relaxing increases programming difficulty
(like memory consistency)

d Persistent Memory Speculation

« HW/SW codesign for strict persistency
* 10%~27% speedup compared to relaxed persistency

* First demonstration of strict persistency outperforming
relaxed persistency

Persistent Memory (PM) is Here!

 User-space access to Non-Volatile Memory

« Enables recoverable applications

Intel Optane DC PMM

PM Programming Challenges

 PM Stores must be:

| Atomic |
: via write-ahead logging”
v v or shadow paging™*
L1-$ | ==+ [L1-$ or idempotent processing?
* ASPLOS 2011, ASPLOS 2016, ASPLOS 2017, EuroSys 2017
** ASPLOS 2020 $ MICRO 2018

I [Ordered](a.k.a. persist-order) |
| : flush & fence instructions [

Target of This Study

Persistence Domain

PM Store Ordering — Strict Persistency

Core nen Core Ex)

———————————————————————

f l,;fg . 8 Flush & Fence
. Flush & Fence
{ Log B @ for each PM store

L1-$ \
| \ Flush & Fence ;
, Data A |
[Shared Cache . Flush & Fence | Minimal
. Data B B programming
i Flush & Fence .: burden
DRAM (compiler-support)
Ctrl.

PM Store Ordering — Relaxed Persistency

Core Core Ex)
: Log A !
} | \ Log B Il Flush & Fence
L1-$ Flush & Fence
| | Data A g
. Data B ‘

! Flush & Fence !

[Shared Cac

DRAM
Ctrl.

(oraM] (M)

Programming
U Difficulty

Ctr . (programmer
intervention)

PM Store Ordering — Relaxed Persistency

[Core | *== [Core | Ex)
1 I

———————————————————————

Strict Persistency
->

Relaxed Persistency

> but

e BN Ilvvll‘l

(programmer
intervention)

Related Work™: FENCE Overheads

#1. Reducing FENCE costs

Core Core
T T [MICRO 2016] & [ASPLOS 2017]

 Hiding fence latency
« Delegating the persist-order
to HW

L1-$

#2. Reducing # of FENCEs

* [MICRO2016], [ASPLOS2017], [ISCA2020], [MICRO2020]

Related Work™: FENCE Overheads

#1. Reducing FENCE costs
Core Core

[MICRO 2016] & [ASPLOS 2017]
 Hiding fence latency
« Delegating the enforcement

L1-$ to HW
[Shared C #2. Reducing # of FENCEs
[ISCA 2020]
DRAM » Further relaxing constraints
Ctrl.

[MICRO 2020]
« Multiple store paths to PM

* [MICRO2016], [ASPLOS2017], [ISCA2020], [MICRO2020]

Related Work™: HW Complexity

Core

Core

PB J--

L1-$
)

v

L1-$
i
Coherence engine

v

PB]

A

A

Shared Cache

DRAM PM
Ctrl. Ctrl.

Intra-thread Persist-Order

L1-$-side Buffers (PBs)

: governs cache-flush orders
based on persistency model

Inter-thread Persist-Order

Cache-coherence extensions
: detects inter-thread dependency

Control Persist-Orders in Private L1-Caches

* [MICRO2016], [ASPLOS2017], [ISCA2020], [MICRO2020]

10

Related Work™: Challenge

L1$-writeback vs. PB Flush

Core Core
T 3 : PB Flush must happen before
L1-writeback for a given block
Lol | L1-Sua Solutions of Prior Works
€oherence enqinf - [MICRO2016]
" Shared Cache : cache-coherent PBs

[ASPL052017]

Prior approaches

(1) increase HW complexities

(2) incur extra latency

* [MICRO2016], [ASPLOS2017], [ISCA2020], [MICRO2020]

11

PMEM-Spec: Persistent Memory Speculation

Core

=g Minimal HW changes
Caches Minimal Program Changes
Unmodified (like Strict Persistency)

HW/SW Codesign for
High Performance Strict Persistency

12

PMEM-Spec Key Ideas

Core | === | Core #1. Speculate PM Accesses

= With Separated
load/store paths to PM

L1-¢ | === [L1-$

#2. Detect ordering violation

| “Shared Cache] (Misspeculation) in HW
I = With Arch/Comp interaction

DRAM PM
Ctrl. [Ctrl. g] _#3 ' Recoyer f_rom
I Misspeculation in SW

[DRAM] [PM] => With failure-atomic SW
as virtual power failure

Separated Load/Store Paths to PM

Core e

Persist-path:
FIFO store path to PM

L1-$ J = [L1$ => Connect SQ to NVM
| | =>» Bypass caches
[Shared Cache m | = Drop cache writebacks
DRAM M[sS ot
Chrl. H}rl. - Regular-path:

Data path through caches

I

(P) => Serves NVM reads only

[DRAM |

14

What does PMEM-Spec Speculate?

. oad Speculation Store Speculation

Core | St

Caches

: PM load must read : PM stores must arrive
latest value from PM in the correct order

Watch Out for Ordering Violation (Misspeculation)!

15

Load

e Symptom:
« If prior stores are pending in the persist-path

« Cause: latency differences in separated load/store paths

Stale read:
Memory consistency violation

0' I !
4

L4

L4

L4
4

% e Pendin
Caches ﬂ\A) (A = g >
. . “ "..‘
Evict €

PM Ctrl.

0))]
©
D
0O
c
Q) o
& b
@
()
~—
@)
-
0....
QO...‘.
S
v

16

Detecting Load Misspeculation

« Observation: if blocks in caches, loads never misspeculate

 Key idea: monitoring recently evicted blocks
» For whether they are overwritten by stores

Q. How long should we monitor?

-==» Regular-path ---» Persist-path

Benign Load Etale Read!

o
»

...... Misspeculation
& Detected

]
......

PM Ctrl.

17

Detecting Load

« Monitor evicted blocks until the worst-case persist latency
« Fixed in the HW design time*

« Speculation Window
« Starts on LLC-eviction of dirty blocks (not updating PM data)

« If blocks being fetched & overwritten within the window,
the fetch was stale

-==» Regular-path Persist-path Speculation window
Core —(StA { A A X LdA 7 =
Caches ‘@ (4 A\ ”

Evict Mlsspeculatlon

Detected
PM Ctrl. Fetch

Best-case Worst-case*

* Best & worst persist-path latencies are determined in HW design time based on HW specification.

Store Misspeculation

 Cause: inter-thread dependency Thread0 Thread 1
- Stores to the same address .. Happens-before order
from multiple threads S ——

« Symptom: out-of-order
persists

Q. How to capture
the store-order
between threads?

(without cache-coherence)

Do not leverage

cache-coherence

19

Detecting Store Misspeculation

« Data-Race-Free (DRF) programs Thread 0 Thread 1
- Inter-thread dependency a/ways Lock Lock
happens in critical sections ShA ShA

- Observation: StAock StAock

Critical section execution order Unlock Unlock

== Inter-thread store-order

 To convey critical section execution order to HW
e Speculation ID
: global-counter incremented when entering critical section
« Arriving lower IDs after higher IDs =» out-of-order arrivals

* New instructions to assign/revoke the speculation ID to a thread
(spec-assign | spec-revoke)

No Programmer Annotation

(compiler-generated codes)

20

Speculation ID Ex) Benign Store

Tl Both stores are benign ETS¥E

mmmm) | OCk mmmm) | OCk
spec-assign spec-assign
StA StA
spec-revoke* ~ Spec-ID: 101 Spec-ID: 100 spec-revoke*

Unlock 101 @ S =¥ 100 Unlock

A: 100

* PMEM-Spec untags the speculation ID when exiting critical sections. Please refer to the paper for details. 21

Speculation ID Ex) Out-of-Order Persists

seral Out-of-Order Persists! Thread 1

mmmm) | OCk mmmm) | OCck
spec-assign spec-assign
StA StA
spec-revoke* ~ Spec-ID: 101 Spec-ID: 100 spec-revoke*

Unlock 101 | s =¥ 100 Unlock

* PMEM-Spec untags the speculation ID when exiting critical sections. Please refer to the paper for details. 22

Misspeculation Recovery

4 v)
[Apps i i
User L Failure-atomic runtime

Runtime aborts & re-executes TXs

(e.g., Mnemosyne [ASPLOS11], PMDK,
iDO [MICRO18])

If Misspeculation detected,

PMEM-Spec
Architecture

interrupt the OS

(e.g., synthetic power failure)

23

Misspeculation Recovery

K s ".\
Apps i i
User L Failure-atomic runtime
Space Runtime aborts & re-executes TXs

_ n — FACPDI N4 471 NDAANL/

PMEM-Spec recovers from misspeculation
with recovery protocols of failure-atomic SW

by treating it as virtual power failure
If Misspeculation detected,
interrupt the OS

(e.g., synthetic power failure)

PMEM-Spec
Architecture

Devices [PM

Methodology

* Full system simulation with gem5 « Benchmarks

« Linux kernel version: 4.8.13 Microbench | Concurrent Queue,

« Ubuntu 16.04 ﬁ;r;»]' I\m?p,
Processor 8-core, 000, 2GHz, x86 RB-Tree, TATP, TPCC
L11/D cache | Private, 32/64KB, 4-way, 2ns WHISPER* | Vacation, Memcached
L2 cache Shared, 16MB, 16-way, 20ns " 5. Nalli et al., ASPLOS 2017.

PM Controller 32/64-entry read/write queue
PM Read: 175ns, write: 94ns
Persist-Path 20ns

« Comparing schemes
 Intel X86 (baseline): Epoch Persistency
« DPO [MICRQO'16]: Strict Persistency
« HOPS [ASPLOS’17]: Epoch Persistency
 PMEM-Spec: Strict Persistency

Evaluation — Throughput

« Microbenchmarks: similar to HOPS (Epoch Persistency)
 Tiny transactions =» less room for speculation

« WHISPER: significantly outperforms previous works
 Larger transactions = advent speculation opportunities

m IntelX86 mDPO = HOPS = PMEM-Spec

O |+
1.2
sla
mn < 1q
o (19
E o 0.8
o (=06
I
0.4
0.2
0
ArraySwap Queue HashMap RB-Tree TATP TPCC Vacatlon Memcached Memcached Memcached
(r50w50) (r10/r90) (r90/w10)
Microbenchmarks WHISPER

26

Evaluation — Persist-Path Latency

* Persist-path operations are mostly out of critical paths
« Only at the end of TXs, the persist-path must be drained

=
W

HOPS m PMEM-Spec

4

(Normalized to Intel X86)
o

—
—

Throughput

Higher is Better

o
©o

©
o'

20ns 40ns 60ns 80ns 100ns
Persist-Path Latency

27

Evaluation — Persist-Path Latency

 Persist-path operations are mostly out of critical paths
* Only at the end of TXs, the persist-path must be drained

More in the paper:

- Speculation buffer in the PM controller
- Runtime & OS Support for PMEM-Spec

- Scalability analysis
- More sensitivity analysis

Higher is Better

®e]slel[I5[e]a M Persistent Memory Speculation

« HW (speculation) / SW (recovery) codesign for persist-order

« With separated load/store paths to PM, e)
Misspeculation is extremely rare [Apps | }
L SUser
. pace
 Leading to high performance \[Runtime
strict persistency outperforming
relaxed persistency
[/;erne/
pace
[PMEM-Spec
Architecture

Devices

29

PMEM-Spec:
Persistent Memory Speculation

(Strict Persistency Can Trump Relaxed Persistency)

Jungi Jeong and Changhee Jung
Purdue University

Session 6A.: Haraware for Crash Consistency
NVMW 2021

PURDUE

UNIVERSITY.

Department of Computer Science

	PMEM-Spec:�Persistent Memory Speculation�(Strict Persistency Can Trump Relaxed Persistency)
	Executive Summary
	Persistent Memory (PM) is Here!
	PM Programming Challenges
	PM Store Ordering – Strict Persistency
	PM Store Ordering – Relaxed Persistency
	PM Store Ordering – Relaxed Persistency
	Related Work*: FENCE Overheads
	Related Work*: FENCE Overheads
	Related Work*: HW Complexity
	Related Work*: Challenge
	PMEM-Spec: Persistent Memory Speculation
	PMEM-Spec Key Ideas
	Separated Load/Store Paths to PM
	What does PMEM-Spec Speculate?
	Load Misspeculation
	Detecting Load Misspeculation
	Detecting Load Misspeculation
	Store Misspeculation
	Detecting Store Misspeculation
	Speculation ID Ex) Benign Store
	Speculation ID Ex) Out-of-Order Persists
	Misspeculation Recovery
	Misspeculation Recovery
	Methodology
	Evaluation – Throughput
	Evaluation – Persist-Path Latency
	Evaluation – Persist-Path Latency
	Conclusion:
	PMEM-Spec:�Persistent Memory Speculation�(Strict Persistency Can Trump Relaxed Persistency)

