
PMEM-Spec:
Persistent Memory Speculation
(Strict Persistency Can Trump Relaxed Persistency)

Jungi Jeong and Changhee Jung
Purdue University

Session 6A: Hardware for Crash Consistency
NVMW 2021



Executive Summary
• Persistency Model: defines persist-orders for failure-recovery

• Challenge for strict persistency  slow!
• (In general) the more relax, the better performance
• But relaxing increases programming difficulty 

(like memory consistency)

•
• HW/SW codesign for strict persistency
• 10%~27% speedup compared to relaxed persistency
• First demonstration of strict persistency outperforming

relaxed persistency
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Persistent Memory Speculation
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Persistent Memory (PM) is Here!
• User-space access to Non-Volatile Memory

• Enables recoverable applications
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Intel Optane DC PMM



PM Programming Challenges

• PM Stores must be:

: via write-ahead logging*

or shadow paging** 

or idempotent processing$

(a.k.a. persist-order)
: flush & fence instructions
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PM Store Ordering – Strict Persistency
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PM Store Ordering – Relaxed Persistency
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PM Store Ordering – Relaxed Persistency
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Related Work*: FENCE Overheads
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Related Work*: FENCE Overheads
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[MICRO 2016] & [ASPLOS 2017]
• Hiding fence latency
• Delegating the enforcement

to HW

[ISCA 2020]
• Further relaxing constraints

[MICRO 2020]
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Related Work*: HW Complexity
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Related Work*: Challenge
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PMEM-Spec: Persistent Memory Speculation
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PMEM-Spec Key Ideas
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Separated Load/Store Paths to PM
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What does PMEM-Spec Speculate?
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Load Misspeculation
• Symptom: stale reads

• If prior stores are pending in the persist-path
• Cause: latency differences in separated load/store paths
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Detecting Load Misspeculation
• Observation: if blocks in caches, loads never misspeculate
• Key idea: monitoring recently evicted blocks

• For whether they are overwritten by stores
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• Monitor evicted blocks until the worst-case persist latency
• Fixed in the HW design time*

•
• Starts on LLC-eviction of dirty blocks (not updating PM data)
• If blocks being fetched & overwritten within the window,

the fetch was stale

Detecting Load Misspeculation
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Store Misspeculation
• Cause: inter-thread dependency

• Stores to the same address
from multiple threads

• Symptom: out-of-order
persists
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Detecting Store Misspeculation
• Data-Race-Free (DRF) programs

• Inter-thread dependency always
happens in critical sections

• Observation:

• To convey critical section execution order to HW
•

: global-counter incremented when entering critical section
• Arriving lower IDs after higher IDs  out-of-order arrivals
• New instructions to assign/revoke the speculation ID to a thread

(spec-assign / spec-revoke)
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Speculation ID Ex) Benign Store
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Speculation ID Ex) Out-of-Order Persists
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Misspeculation Recovery
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Misspeculation Recovery
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Methodology
• Full system simulation with gem5

• Linux kernel version: 4.8.13
• Ubuntu 16.04

• Comparing schemes
• Intel X86 (baseline): Epoch Persistency
• DPO [MICRO’16]: Strict Persistency
• HOPS [ASPLOS’17]: Epoch Persistency
• PMEM-Spec: Strict Persistency

Processor 8-core, OoO, 2GHz, x86
L1 I/D cache Private, 32/64KB, 4-way, 2ns
L2 cache Shared, 16MB, 16-way, 20ns
PM Controller 32/64-entry read/write queue
PM Read: 175ns, write: 94ns
Persist-Path 20ns

Microbench Concurrent Queue,
Array Swap,
HashMap,
RB-Tree, TATP, TPCC

WHISPER* Vacation, Memcached

• Benchmarks
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* S. Nalli et al., ASPLOS 2017.



Evaluation – Throughput
• Microbenchmarks: similar to HOPS (Epoch Persistency)

• Tiny transactions  less room for speculation

• WHISPER: significantly outperforms previous works
• Larger transactions  advent speculation opportunities
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Evaluation – Persist-Path Latency
• Persist-path operations are mostly out of critical paths
• Only at the end of TXs, the persist-path must be drained

27

0.8

0.9

1

1.1

1.2

1.3

20ns 40ns 60ns 80ns 100ns

Th
ro

ug
hp

ut
(N

or
m

al
ize

d 
to

 In
te

l X
86

)

Persist-Path Latency

HOPS PMEM-Spec

Hi
gh

er
 is

 B
et

te
r



Evaluation – Persist-Path Latency
• Persist-path operations are mostly out of critical paths
• Only at the end of TXs, the persist-path must be drained
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More in the paper:
- Speculation buffer in the PM controller
- Runtime & OS Support for PMEM-Spec
- Scalability analysis
- More sensitivity analysis

…



Conclusion: 
• HW (speculation) / SW (recovery) codesign for persist-order

• With separated load/store paths to PM,
Misspeculation is extremely rare

• Leading to high performance
strict persistency outperforming
relaxed persistency
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