
A Persistent
Lock-Free Queue
for Non-Volatile
Memory

Michal
Friedman

Maurice
Herlihy

Virendra
Marathe

Erez
Petrank

NVMW ‘19

�1

THIS TALK

Concurrent Data
Structures

Non-Volatile
Byte-Addressable

Memory

�2

▸ Platform & Challenge
▸ Definitions
▸ Queue designs
▸ Evaluation

PLATFORM - BEFORE

CPU & Registers

High-Speed Cache

Memory
(RAM)

Upon a crash Cache and Memory content is lost

Hard Disk

�3

PLATFORM - AFTER

CPU & Registers

High-Speed Cache

Memory
(RAM)Non-

Volatile
Memory

Hard Disk

�4

Upon a crash Cache content is lost

OPPORTUNITY

Non-
Volatile
Memory

CPU & Registers

High-Speed Cache

Instead of writing blocks to disk, make our
normal data structures persistent!

�5

MAJOR PROBLEM: ORDERING NOT MAINTAINED

▸ Write x = 1

▸ Write y = 1

▸ Flush &x

▸ Flush &y 

Cache

Memory

FlushEviction

Due to implicit eviction:  
Upon a crash, memory may contain y = 1 and x = 0.

O2 can follow up on O1, but only O2 is reflected in the
memory.

Implicit eviction of y

�6

EXAMPLE

▸ Suppose everything has been written except for this one pointer

▸ If a crash occurs, the memory will contain:

Head Tail

Head Tail

�7

CHALLENGE

Non-
Volatile
Memory

CPU & Registers

High-Speed Cache
Challenge: make
data persistent at

minimal cost

Problem: Caches and registers are volatile.
▸ Usually don’t care what’s in the cache/memory
▸ Here we care! Flush some data to maintain consistency in memory
▸ Flushing is costly

�8

THE MODEL
▸ Main memory is non-volatile

▸ Caches and registers are volatile

▸ All threads crash together

▸ New threads are created to continue the execution

�9

NEXT
▸ Definitions

▸ The queue designs

• Surprisingly many details and challenges

�10

LINEARIZABILITY

‣ [HerlihyWing ’90]
• Each method call should appear to take effect

instantaneously at some moment between its
invocation and response

�11

Thread 1 q.enq(5)

time

Thread 2 q.enq(1)

q.deq()=5Thread 1 q.enq(5)

time

Thread 2 q.enq(1)

q.deq()=1

CORRECTNESS FOR NVM �12

Buffered
Durable

Linearizability

Durable
Linearizability

Detectable
Execution< <

Strength

1 2 3

Consistent state

[IzraelevitzMendesScott ’16] [IzraelevitzMendesScott ’16] [FHerlihyMarathePetrank ’18]

DURABLE LINEARIZABILITY �13

Thread 1

Thread 2

q.enq(5)

q.enq(1)

q.deq=(1)q.deq=(1)

q.deq=(5)

time

▸ [IzraelevitzMendesScott ’16]
• Operations completed before the crash are recoverable

(plus some overlapping operations)
• Prefix of linearization order

Thread 1

Thread 2

q.enq(5)

q.enq(1) q.deq=(5)

time

< <

DETECTABLE EXECUTION
▸ [FHerlihyMarathePetrank ’18]

• Durable-linearizability - no ability to determine completion

• Detectable execution extends durable linearizability:

• Provide a mechanism to check if operation completed

• Implementation example: a persistent log

�14< <

Thread 1

Thread 2

q.enq(5)

q.enq(1)

q.deq=(1)q.deq=(1)

q.deq=(5)

time

▸ [IzraelevitzMendesScott ’16]
• Some prefix of a linearization ordering
• Support: a “sync” persists all previous operations

BUFFERED DURABLE LINEARIZABILITY

Thread 1 q.enq(5)

time

Thread 2 q.enq(1)

q.deq=(1)

q.deq=(5

Sync

�15

Thread 1 q.enq(5)

time

Thread 2

< <

THREE NEW QUEUE DESIGNS

▸ Three lock-free queues for non-volatile memory
[FHerlihyMarathePetrank ’18]

DurableRelaxed Log
Durable + can

tell if an
operation
recovered

(Detectable)

A prefix of
executed

operations is
recovered
(Buffered)

▸ Design

▸ Evaluation

�16

< <
All operations

completed
before the crash

are recovered
(Durable)

▸ Based on lock-free queue [MichaelScott ’96]

MICHAEL AND SCOTT’S QUEUE (BASELINE)
▸ A Lock-Free queue

▸ The base algorithm for the queue in java.util.concurrent

▸ A common simple data structure, but

▸ Complicated enough to demonstrate the challenges

Head Tail

Data Data Data Data

�17

ENQUEUE

Head Tail

Data Data Data

Data

x

Data

▸ Enqueue (data):
1. Allocate a node with its values.

2. Read tail and tail->next values.

3. Insert node to queue - CAS last pointer ptr point to it.

4.Update tail.

1.a. Flush node content to memory. (Initialization guideline.)

3.a. Flush ptr to memory. (Completion guideline.)

2.a. Help: Update tail.

�18ENQUEUEDURABLE

volatile
non-volatile

< <

Head Tail

Data Data Data

Data

x

Data

�19ENQUEUE - MORE COMPLEXDURABLE
▸ Enqueue (data):

1. Allocate a node with its values.

2. Read tail and tail->next values.

3. Insert node to queue - CAS last pointer ptr point to it.

4.Update tail.

1.a. Flush node content to memory. (Initialization guideline.)

3.a. Flush ptr to memory. (Completion guideline.)

2.a. Help: Update tail.

For example, if this CAS fails due to concurrent
activity, we need to be careful to maintain
durable linearizability…

volatile
non-volatile

▸ Enqueue (data):
1. Allocate a node with its values.

2. Read tail and tail->next values.

3. Insert node to queue - CAS last pointer ptr point to it.

4.Update tail.

1.a. Flush node content to memory.

3.a. Flush ptr to memory.

2.a. Help: Update tail.

Head Tail

Data Data Data

Data

x

Fail

y

Data

�20ENQUEUE - MORE COMPLEXDURABLE

Tail

Head Tail

Data Data Data

Data

x

Fail

y

Data

▸ Enqueue (data):
1. Allocate a node with its values.

2. Read tail and tail->next values.

3. Insert node to queue - CAS last pointer ptr point to it.

4.Update tail.

1.a. Flush node content to memory.

3.a. Flush ptr to memory. (Completion

2.a. Help: Update tail.

▸ Complete (and persist) previous operation:

5. Flush ptr to memory.

6.Update tail.

�21ENQUEUE - MORE COMPLEXDURABLE

RELAXED QUEUE

▸ Buffered Durable
linearizable

▸ Challenge 1: Obtain
snapshot at sync() time

▸ Challenge 2: Making sync()
concurrent

LOG QUEUE
▸ Durable linearizable

▸ Detectable execution

▸ Log operations

▸ More complicated
dependencies and
recovery

�22

EVALUATION

▸ Compare the three queues: durable, relaxed, log and
Michael and Scott’s queue

▸ Platform: 4 AMD Opteron(TM) 6376 2.3GHz processors,
64 cores in total , Ubuntu 14.04.

▸ Workload: threads run enqueue-dequeue pairs
concurrently

�23

Durability &
detectable costly.
Similar overhead

Buffered
durability less
costly

EVALUATION - THROUGHPUT
�24

Michael and Scott’s - baseline
Durable (durable linearizable)
Log (detectable)
Relaxed - frequent “sync”
Relaxed - between in/frequent
Relaxed - infrequent “sync”

Implementation details:
- Frequent sync: every 10 ops/thread
- Infrequent sync: every 1000 ops/thread
- Queue initial size: 1 M

Operations/Sec
[Millions]

Persistent

Not
persistent

CONCLUSION
▸ A variant of durable linearizability: detectable execution

▸ Three lock-free queues for NVM: Relaxed, Durable, Log

▸ Guidelines

▸ Evaluation

• Durability and detectability -
similar overhead

• Buffered durability is less costly

�25

