A Persistent
Lock-Free Queue
for Non-Volatile
Memory

NVMW “19




THIS TALK

Non-Volatile

Concurrent Data Byte-Addressable

Memory

Structures

Platform & Challenge
Definitions

Queue designs
Evaluation



PLATFORM - BEFORE 3

M Memory
T ¢ (RANI)

Hard Disk

ny anmm®mmnnm

Upon a crash Cache and Memory content is lost



PLATFORM - AFTER ‘*

Non-
T i Volatile

» |
High-SpeedCache Memory

Hard Disk

Upon a crash Cache content is lost



OPPORTUNITY

CPU & Registers

Non-
T ¢ Volatile
—_ e 4 Memory
High-Speed Cache ¢

Instead of writing blocks to disk, make our
normal data structures persistent!



MAJOR PROBLEM: ORDERING NOT MAINTAINED
» Write x =1

» Writey =1 Eviction l Flush

» Flush &x
Memo
Due to implicit eviction:
Upon a crash, memory may containy =1 and x=0.

!

O: can follow up on Os, but only O: is reflected in the
memory.




EXAMPLE

Head

l

)

» Suppose eve

) If a crash occ

Head




CHALLENGE

CPU & Registers

(IR

High-Speed Cac

Problem: Caches ar

) Usually don't care what's i ache/memery

» Here we care! Flush soméfdatato maintain consistency in memory

» Flushing is costly



THE MODEL

» Main memory is non-volatile
» Caches and registers are volatile
» All threads crash together

» New threads are created to continue the execution



NEXI

» Definitions
» The queue designs

e Surprisingly many details and challenges

10



LINEARIZABILITY )

» [HerlihyWing '90]
e Each method call should appear to take effect

instantaneously at some moment between its
invocation and response

Thread 1 ¢m5> ®@q.deq()=1
Thread 2 ¢m¢

time



CORRECTNESS FOR NVM

12

Consistent state

1 2
Buffered Durable

Durable Linearizability
Linearizability

[IzraelevitzMendesScott '16] [IzraelevitzMendesScott '16]

3
Detectable

Execution

[FHerlihyMarathePetrank 18]

—

Strength



DURABLE LINEARIZABILITY oL

» [lzraelevitzMendesScott ‘16]
* Operations completed before the crash are recoverable
(plus some overlapping operations)

® Prefix of linearization order

Thread 1 ¢ma}
Thread 2 @Iﬂ}

time



DETECTABLE EXECUTION < <l

» [FHerlihyMarathePetrank '18]

* Durable-linearizability - no ability to determine completion

* Detectable execution extends durable linearizability:
* Provide a mechanism to check if operation completed

* Implementation example: a persistent log

Thread 1 ¢mﬁ}
Thread 2 @Iﬂ}

LKy
s
s
s
H .
.
- .
4 .
v .
p [ ] Y
.
.
.
5 EEEH J
' .
L
[
e
X4
)

time



BUFFERED DURABLE LINEARIZABILITY ;

» [lzraelevitzMendesScott '16] . < <
ﬁ

* Some prefix of a linearization ordering
e Support: a “sync” persists all previous operations

Sync

Thread 1 ¢ME>

Thread 2




THREE NEW QUEUE DESIGNS

16

» Three lock-free queues for non-volatile memory
[FHerlihyMarathePetrank 18]

Relaxed RSl Durable IR Log

A prefix of All operations Durable + can
executed completed tell if an
operations is before the crash operation
recovered are recovered recovered
(Buffered) (Durable) (Detectable)

» Based on lock-free queue [MichaelScott '96]

» Design

» Evaluation




MICHAEL AND SCOTT'S QUEUE (BASELINE)

17

» A Lock-Free queue
» The base algorithm for the queue in java.util.concurrent
» A common simple data structure, but

» Complicated enough to demonstrate the challenges

Head Tail

1 x
:

Data Data Data

D



DURABLE ENQUEUE <M< e

» Enqueue (data):

1. Allocate a node with its values.
1.a. Flush node content to memory. (Initialization guideline.)

2. Read tail and tail->next values.

2.2. Help: Update tail.
3. Insert node to queue - CAS last pointer ptr point to it.
3.2. Flush ptrto memory. (Completion guideline.)
4. Update tail.

ead

D“
Data Data
........ volatile

non-volatile




DURABLE ENQUEUE - MORE COMPLEX ”

» Enqueue (data):

For example, if this CAS fails due to concurrent

1. Allocate a node with its values. FEGIVIIANERT-1=To RioN TNV =Y (V] KEN EYl =11y
durable linearizability...

2.2. Help: Update tail.
3. Insert node to queue -|CAS last pointer ptr point to it.

3.2. Flush ptrto memory. (Completion guideline.)

1.a. Flush node content to mem

2. Read tail and tail->next values.

4. Update tail.
ead Tall

l l

Data Data
........ volatile

non-volatile




DURABLE ENQUEUE - MORE COMPLEX :

» Enqueue (data):

1. Allocate a node with its values.

1.a. Flush node content to memory.

2. Read tail and tail->next values.

2.a. Help: Update tail. .
P =P Tail

3. Insert node to queue -|CAS last pointer ptr point to it.| Fail

3.a. Flush ptr to memory.

4. Update tail.

Head

l



DURABLE ENQUEUE - MORE COMPLEX :

» Enqueue (data):
1. Allocate a node with its values.
1.a. Flush node content to memory.

2. Read tail and tail->next values.

2.a. Help: Update tail.

3. Insert node to queue {CAS last pointer ptr point to it. Fail

» Complete (and persist) previous operation:
5. Flush ptr to memory.

6.Update tail.

Head

|
-




» Buffered Durable
linearizable

» Challenge 1: Obtain
snapshot at sync() time

» Challenge 2: Making sync()
concurrent

LOG QUEUE .

» Durable linearizable
» Detectable execution
» Log operations

» More complicated
dependencies and
recovery



EVALUATION

» Compare the three queues: durable, relaxed, log and
Michael and Scott’s queue

» Platform: 4 AMD Opteron(TM) 6376 2.3GHz processors,
64 cores in total , Ubuntu 14.04.

» Workload: threads run enqueue-dequeue pairs
concurrently

23



EVALUATION - THROUGHPUT .

Operations/Sec 14
[Millions] ®—® Michael and Scott’s - baseline

12} *—* Durable (durable linearizable) ||

Not /10' A—4A Log (detectable)

persistent < Relaxed - frequent “sync”
8t v—¥ Relaxed - between in/frequent|| = B ffered
. ®—® Relaxed - infrequent “sync” durability less

costly

& @

Persistent o]l 0‘,%0\
v-‘

1 2 3 4 5 6 71 8

Num of Threads

Implementation details:
Frequent sync: every 10 ops/thread
Infrequent sync: every 1000 ops/thread
Queue initial size: 1T M



CONCLUSION i

» Avariant of durable linearizability: detectable execution
» Three lock-free queues for NVM: Relaxed, Durable, Log

» Guidelines

» Evaluation

* Durability and detectability -
similar overhead

* Buffered durability is less costly

You want to crashil!
| show you how to cragh!!!




