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Abstract—Codes providing multi-level access have received
substantial research attention because of their capabilities to
combat server failures in cloud storage. We provide a general
construction that is both sufficient and necessary for reaching
the well-known singleton bound for multi-level accessible codes.
We present a general decoding protocol as well. Based on
this result, we derive the lower bound on information leakage,
which is viewed as the amount of information conveyed from
unintended local clouds to the central cloud about their own local
messages. We introduce a code construction based on Cauchy
Reed-Solomon (CRS) codes, and prove that this construction
achieves the lower bound on the information leakage.

I. INTRODUCTION

Codes offering multi-level access have been intensely stud-
ied for their capabilities to reduce the average reading cost
in various erasure-resilient data storage applications including
Flash storage, RAID, cache, and future SSD-based cloud
storage architectures, etc [1]. In the conventional setting, the
occurrence of an additional error, beyond the error correction
capability of a code, results in decoding failure. Multi-level
accessible codes provide protection against these unexpected
errors, where consecutive p messages are jointly written into
p sub-blocks. Multi-level access property provides unexpected
extra protection against additional errors without affect average
reading cost in the normal case, which is beneficial for
speeding up reading process in memory.

Various codes offering multi-level decoding have been
proposed in recent literature. The family of Reed-Solomon
(RS) codes has been a major prototype for constructions of
double-level codes with efficient rates [2]. Pyramid Codes
[3] and ladder codes [4] offer reduced read reconstruction
cost in large-scale storage systems, where extra global parity
check nodes are added at each layer while scaling hierarchical
networks. The integrated-interleaving (I-I) codes [5] are the
first constructions that offer double-level error-correction and
achieve the singleton bound. However, these codes are not
multi-level accessible when they are multi-level decodable,
in other words, there is no clear mapping between the local
information symbols and the corresponding sub-block in a
codeword in the I-I codes. Multi-block interleaved codes
presented in [6] are the first known codes that enable multi-
level access in literature. In this paper, we focus on more
general constructions of multi-level accessible codes and their
decoding protocols.

II. MODEL AND NOTATION

We say C is an (n,k,d)q-code if C ⊂ GF (q)n, dim(C) =
k, and min

c1,c2∈C,c1 6=c2

dH(c1, c2) = d, where dH refers to

the Hamming distance. In a multi-level accessible code C,
consecutive p messages, m1,m2, · · · ,mp, are jointly mapped
into consecutive p codewords, c1, c2, · · · , cp, where mi ∈
GF (q)k, ci ∈ GF (q)n, for all 1 ≤ i ≤ p. If there
exist (n, k, d1)-codes {Ci}pi=1, such that ci ∈ Ci for all
1 ≤ i ≤ p, and C is an (pn, pk, d2)-code, then we call
C a (p,n,k,d1,d2)q-code. Suppose that servers connected
to local cloud i store the codeword ci, i ∈ [p], then each
(p,n,k,d1,d2)q-code, d2 ≤ 2d1, provides multi-level access
in the cloud configuration.

Lemma 1. (cf. [7]) Consider a (p, n, k, d1, d2)q-code, and let
r = n− k. For δ ∈ N, δ < r, if d2 ≤ n+ 1, d1 = r − δ + 1,
then d2 ≤ r + (p− 1)δ + 1.

III. CODES FOR MULTI-LEVEL ACCESS

Note that a generator matrix G of any (p, n, k, r − δ +
1,min{r + (p − 1)δ + 1, 2(r − δ + 1)})q-code has a natural
block structure as follows:

G =


A1,1 A1,2 · · · A1,p

A2,1 A2,2 · · · A2,p

...
...

. . .
...

Ap,1 Ap,2 · · · Ap,p

 , (1)

where Ai,j ∈ GF (q)k×n, ∀i, j ∈ [p].

Theorem 1. The generator matrix G in (1) must satisfy the
following constraints:

1) (Local accessibility) rank (Aj,j) = k, for all i ∈ [p].
2) (Multi-level distance) Ai,j = Bi,jUj for some Bi,j and

Uj such that dim (Bi,j) = dim (Uj) = δ, R(UT
j ) ∩

R(AT
j,j) = {0n}, for all i, j ∈ [p], i 6= j.

3) (Local parity matrix) Let HC,j ∈ GF (q)n×(r−δ) be a full
column rank matrix such that AjHC,j = UjHC,j = 0r.
Then, HC,j is a parity check matrix of an (n, n − r +
δ, r − δ + 1)q-code, for all j ∈ [p].

4) (Global parity matrix) Let Hj ∈ GF (q)n×r be a full
column rank matrix such that Aj,jHj = 0r. Then, HG

j ,
which is described below, is a parity check matrix of an
(n, n − r − (p − 1)δ, r + (p − 1)δ + 1)q-code, for some



permutation matrix Qj and nonsingular matrix Lj , for
all j ∈ [p],

HG
j =

 QjHj

not including LjBj,j︷ ︸︸ ︷
LjBj,1 · · · LjBj,p

0r×(p−1)δ

 . (2)

Construction 1. (Converse of Theorem 1) Let HC
j ∈

GF (q)n×(r−δ), HR
j ∈ GF (q)n×δ , Hi,j ∈ GF (q)k×r, i, j ∈

[q], i 6= j. Suppose that for any j ∈ [p], HC
j and HG

j in
the following equation can be parity check matrices for an
(n, n− r+ δ, r− δ+1)q code and an (n, n− r− (q−1)δ, r+
(q − 1)δ + 1)q code, respectively.

HG
j =

 HC
j︸︷︷︸

n×(r−δ)

HR
j︸︷︷︸

n×δ

Hj,i: k×δ, i∈[p]\{j}︷ ︸︸ ︷
Hj,1 · · · Hj,p

0r×(p−1)δ

 . (3)

Let Qj ∈ GF (q)n×n and Lj ∈ GF (q)k×k be permutation
matrices and invertible matrices, respectively, ∀j ∈ [p]. Let
Ãj,j ∈ GF (q)k×n be full row rank matrices such that
Ãj,j

[
HC
j ,H

R
j

]
= 0k×r, ∀j ∈ [p]. Let Ũj ∈ GF (q)δ×n

be full row rank matrices such that ŨjH
C
j = 0δ×(r−δ),

R(ŨT
j ) ∩R(AT

j ) = {0n}.
Let Aj,j = Ãj,jQj , Ai,j = L−1i Hi,jŨjQj , for i, j ∈ [p],

i 6= j. Then G in (1) is a generator matrix of a (p, n, k, r −
δ + 1, r + (p− 1)δ + 1)q-code.

Construction 2. (CRS-based code) Let Qj = In, Lj = Ik,
j ∈ [p]. Let ai, bj , i ∈ [k + δ], j ∈ [r + (p− 1)δ] be
distinct elements of GF (q), where q > n + pδ. Consider
the Cauchy matrix T ∈ GF (q)(k+δ)×(r+(p−1)δ) such that
(T)i,j = 1/(ai − bj), i ∈ [k + δ], j ∈ [r + (p− 1)δ]. For
each j ∈ [p], we obtain Pj , Rj , Hj,i, i, j ∈ [p], i 6= j,
according to the following partition of T,

T =

 k×r︷︸︸︷
Pj

Hj,i: k×δ, i∈[p]\{j}︷ ︸︸ ︷
Hj,1 · · · Hj,p

Rj 0δ×(p−1)δ

 . (4)

Let Aj,j = [Ik,Pj ], and Uj = [0δ×k,Rj ]. Then, according
to Construction 1, Bi,j = Hi,j , Ai,j = Bi,jUj , i, j ∈ [p],
i 6= j. Then G in (1) is a generator matrix of a (p, n, k, r −
δ + 1, r + (p− 1)δ + 1)q-code.

IV. GLOBAL DECODING AND DATA-PRIVACY

Protocol 1 presents the global decoding protocol for local
message mi, i ∈ [p]. Without loss of generality, suppose the
target cloud is cloud 1. Suppose mj = (mj,1,mj,2, · · · ,mj,k).
Define the information leakage from neighboring servers i ∈
J , J ⊂ [k], of local cloud j to local cloud 1 as ICj→1(J) ,
I(xj,1; {mj,i}i∈J). Then, for all ε ∈ [k] such that |J | = k− ε,
we have,

min ICj→1(J) =

{
(p− 1)δ − ε, 0 ≤ ε < (p− 1)δ,

0, ε ≥ (p− 1)δ.
(5)

When the lower bound 0 on the information leakage is
attained for all J ⊂ [k] such that |Jc| > (p − 1)δ, as in

CRS-based codes presented in Construction 2, every group of
k−(p−1)δ information symbols of the message stored in cloud
i appear to be uniformly distributed over GF (q)k−(p−1)δ at
the central cloud. In contrast, when the information leakage
is strictly positive, as in RS-based codes presented in [6],
the central cloud can obtain nontrivial information about the
message symbols in this group.

Protocol 1 Global Decoding of Local Message mi

Encoding Parameters:
Dj→i, Ej→i, Fj→i, j ∈ [p] \ {i};

1: for j ∈ [p] \ {i} do
2: Local cloud j inquires data cj from its neighboring

servers;
3: Local cloud j decodes mj and yj =

∑
l 6=jmlBl,j ;

4: Local cloud j sends xj→i = mjDj→i + yjEj→i to
the central cloud;

5: end for
6: The central cloud sends zC→i =

∑
j 6=i xj→iFj→i =

[yi,miBi,1, · · · ,miBi,p] to local cloud i;
7: Local cloud i inquires data ci from its neighboring servers;
8: Local cloud i decodes mi from ci and zi;

V. CONCLUSION AND FUTURE WORK

Multi-level accessible codes can be well suited for future
SSD-based cloud storage architectures. In this paper, we
presented a general construction of these codes and showed
that this construction is necessary for any singleton-bound
achieving multi-level accessible code. We believe this will be
useful for designing other codes in this domain. We studied
the decoding protocols and derived bounds on the information
leakage of local messages to the central cloud. We proved that
the proposed CRS-based construction achieves those bounds.
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