
FreqTier: Lightweight Adaptive Tiering
for CXL Memory Systems

Kevin Song1, Jiacheng Yang1, Zixuan Wang2, Jishen Zhao2, Sihang Liu3, Gennady Pekhimenko1,4
University of Toronto1 University of California San Diego2 University of Waterloo3 CentML4

1 Introduction and Motivation
Modern applications [2] demand increasingly large memory
capacity and high bandwidth. However, main memory is
already one of the most expensive components in data center
servers. Meta reports that 37% of the total cost of ownership
is spent on memory [6]. Moreover, the growth in DRAM
density has been slowing down since the last decade [7],
further limiting the capacity scalability of main memory.

Compute Express Link (CXL) memory tiering is a promis-
ing solution. Compared to local DRAM, CXL-attached mem-
ory has a larger capacity, but suffers from higher latency and
lower bandwidth. Therefore, a tiering system should priori-
tize placing hot data in local DRAM (fast-tier) while keeping
cold data in CXL memory (slow-tier) for better performance.

However, achieving high performance for a tiered system
is challenging. We make two observations: 1) Real-world
workloads often exhibit dynamically varying data hotness
distributions [3]. For instance, hot data items can become
cold in a matter of minutes [2], causing the hotness dis-
tribution to change dynamically. 2) Managing data access
statistics can incur high overhead. Large memory servers
with terabytes of memory capacity can contain billions of
pages. Tiering metadata associated with each page combined
can consume non-negligible memory thus decreasing tiering
cost-effectiveness. In addition, frequently accessing the tier-
ingmetadata can generate high amounts of CPU cache traffic,
causing resource contentions. Based on these challenges, an
ideal tiering system should satisfy three requirements: 1)
accurately capture the hot set by placing the hottest data in
fast-tier memory 2) quickly adapt to changes in the hotness
distribution 3) minimize tiering metadata overhead.

2 Prior Tiering Systems
We analyze prior works based on the above three require-
ments. One class of tiering system adopts frequency-based
tiering [5], which stores the access count of each page to
build an overall hotness histogram. To maintain freshness,
such systems reduce all page access counts periodically, a
process called “cooling”. This cooling mechanism presents
a tradeoff between requirements 1 and 2. A lower cooling
period allows the tiering system to identify new hot/cold
pages more quickly, since page access counters are refreshed
more frequently. However, doing so also causes the hotness
histogram to be less accurate, since it reduces the number of
memory accesses reflected in the histogram. Furthermore,

Workload

tier.so
Runtime
linked

Performance
Event

Sampling

Frequency
tracker

Momentum
tracker

Update 
both trackers

FreqTier 
Manager

Cold

fast-tier 

slow-tier 

Hot

Migrate 
pages

Access 
statistics

Application FreqTier Runtime Tiered Memory

1 2 3 4 5

Figure 1. System overview of FreqTier.

to store access counts for billions of pages, prior frequency-
based systems can incur gigabytes of memory overhead per
server, translating to lower cost-effectiveness at the data
center scale (requirement 3).

Another class of prior works [6] is recency-based tiering,
which uses data access recency to approximate data hotness.
Such systems do not consider a page’s historical access sta-
tistics, but instead use recency metrics such as time between
consecutive page faults to make data placement decisions.
The main drawback of recency-based systems is their inabil-
ity to accurately identify hot pages, since a recently accessed
page may or may not be a hot page [5].

3 FreqTier Design
Adapting to Varying Hotness Distributions. Frequency-
based tiering can effectively capture the overall hotness dis-
tribution, but cannot quickly adjust to changes. Recency-
based tiering can identify new hot pages quickly, but cannot
accurately capture the entire hot set. We observe that this
tradeoff is the consequence of the fact that prior systems
only tracks one metric for each page. Based on this observa-
tion, our key idea is to maintain two separate metrics for
each page: “frequency” and “momentum”. This is illustrated
in Figure 1. Frequency tracks the number of accesses in
the order of minutes to hours, while momentum monitors
access intensity within seconds. FreqTier promotes pages
with high frequency OR high momentum. This allows pages
that recently became hot to be quickly promoted. FreqTier
immediately demotes pages with low frequency AND low
momentum. Pages with low frequency but high momentum
are given a second chance, since such pages may be only
cold temporarily. In practice, the frequency threshold is auto-
matically adjusted based on the current hotness distribution
(similar to Memtis [5]), while the momentum threshold is
set empirically to 3. This flexible migration policy enables

1



3 0 9 1 3 9 0 9

GET(page 0x1000) = 3

3 9 9 1 3 9 3 9

GET(page 0x1000) = 3

4 9 9 1 4 9 4 9

INCREMENT(page 0x1000)

4 9 9 1 4 9 0 9

GET(page 0x4000) = 9

4 10 10 1 4 10 0 10

INCREMENT(page 0x4000)

Step 1

Step 3

Step 2

Step 4

Figure 2. Counting bloom filter illustration. Counters repre-
sent page access counts.

FreqTier to accurately capture the long-term hotness distri-
bution (req. 1) while simultaneously quickly identify pages
that are turning hot and turning cold (req. 2).
Metadata Memory Overhead. Prior frequency-based

systems utilize exact data structures, such as hash table, to
store page access counts. Exact data structures guarantee
that a lookup will always return the previous latest value
inserted. A hash table guarantees exactness by allocating
dedicated memory for each item and resolving hash con-
flicts. We argue that exactness is not required for memory
tiering. Intuitively, even if the access count of a very hot
page is slightly inaccurate, it will most likely still be classi-
fied as a hot page. Following this intuition, FreqTier FreqTier
adopts counting bloom filters (CBFs), a probabilistic data
structure, to store page access counts. Unlike a hash table,
CBF intentionally allow hash collisions to achieve higher
memory efficiency. Figure 2 illustrates CBF operations. Our
experiments show the inaccuracy due to hash collisions has
a negligible impact on application performance.
Reducing Tiering Cache Overhead. The main source

of cache overhead for prior tiering systems occurs during
tiering metadata updates. For every memory access sample
collected, the tiering system increments the access counter
of the sampled page. Since the size of all tiering metadata can
easily exceed the LLC cache size, frequent metadata updates
can result in a large number of cache misses. To address
this, FreqTier adopts blocked counting bloom filter [1], an
optimization on top of CBF to guarantee each lookup will
incur exactly one cache access and at most one cache miss.

4 Evaluation
Methodology. Similar to recent works [5], we use a two
socket server to emulate CXLmemory, where the local NUMA
node is the fast-tier, and remote NUMA node the slow-tier.
Each socket consists of a 16-core Intel Xeon 4314 processor
and 512GB of DDR4 memory.

Baselines andWorkloads. We compare FreqTier against
Memtis [5] and AutoNUMA [4] on six large memory appli-
cations. CacheLib is a production-level in-memory caching
engine [2]. GAP benchmark suite is a collection of stan-
dard graph processing kernel implementations. XGBoost is
a widely used gradient-boosting library commonly executed
on CPU systems.

0.0

0.5

1.0

1.5

2.0

1:
16 1:
8

1:
4

1:
16 1:
8

1:
4

1:
16 1:
8

1:
4

1:
16 1:
8

1:
4

1:
16 1:
8

1:
4

1:
16 1:
8

1:
4

1:
16 1:
8

1:
4

1:
16 1:
8

1:
4

CDN P50 CDN op/s social-
graph P50

social-
graph op/s

BFS CC PR XGBoost

Fr
eq

T
ie

r 
re

la
tiv

e 
sp

ee
du

p

Over Memtis Over AutoNUMA

Figure 3. Regular page performance.

End to end Performance. Figure 3 shows FreqTier
performance on regular 4KB pages under various fast to
slow-tier memory ratios (1:4 represents 128GB fast-tier and
512GB slow-tier). On average, FreqTier outperforms Memtis
and AutoNUMA by 25% and 9% respectively. Compared to
Memtis and AutoNUMA, FreqTier’s performance improve-
ments come from its better adaptability and lower cache
overhead. Under huge page, FreqTier outperforms Memtis
by 1.11× and 1.13× for 1:8 and 1:4 configurations respectively
while performing on par for 1:16.

Metadata Overhead. In terms of tiering metadata size,
FreqTier incurs 4.6× less metadata overhead than Memtis
on average. This is because FreqTier uses more memory-
efficient probabilistic data structures to track page access
counts. In terms of cache overhead, compared to Memtis, Fre-
qTier reduces the total number of L1 and LLC cache misses
by 1.7× and 1.8× when using regular pages, and 3.2× and
3.5× under huge pages.

5 Conclusion
We propose FreqTier, an adaptive and lightweight tiered
memory system. FreqTier quickly adapts to changing access
distributions by tracking both long and short-term access sta-
tistics simultaneously. At the same time, FreqTier achieves
low metadata memory and cache overhead by adopting prob-
abilistic access frequency tracking.

References
[1] A high performance caching library for java. https://github.com/ben-

manes/caffeine.
[2] Benjamin Berg et al. The CacheLib caching engine: Design and ex-

periences at scale. In 14th USENIX OSDI, pages 753–768. USENIX
Association, November 2020.

[3] Christina Giannoula et al. Daemon: Architectural support for efficient
data movement in fully disaggregated systems. Proc. ACM Meas. Anal.
Comput. Syst., 7(1), March 2023.

[4] Ying Huang. [patch -v4 0/3] memory tiering: hot page selection.
[5] Taehyung Lee et al. Memtis: Efficient memory tiering with dynamic

page classification and page size determination. In Proceedings of the
29th SOSP, page 17–34, New York, NY, USA, 2023. Association for
Computing Machinery.

[6] Hasan Al Maruf et al. TPP: Transparent page placement for CXL-
enabled tiered-memory. In Proceedings of the 28th ACM ASPLOS, New
York, NY, USA, 2023. Association for Computing Machinery.

[7] Onur Mutlu. Memory scaling: A systems architecture perspective.

2

https://github.com/ben-manes/caffeine
https://github.com/ben-manes/caffeine

	1 Introduction and Motivation
	2 Prior Tiering Systems
	3 FreqTier Design
	4 Evaluation
	5 Conclusion
	References

