
Detecting and Repairing Bugs in Persistent Concurrent Programs

Tooba Khan, Srivatsan Ravi, Chao Wang
University of Southern California

1 Introduction

The availability of byte-addressable Persistent Mem-
ory (PM) has sparked increased efforts towards de-
signing persistent concurrent data structures capable
of recovering from system crashes due to power fail-
ures. For concurrent programs, in particular, it can
be challenging for programmers to ensure proper data
persistence, which is crucial for maintaining consis-
tency and guaranteeing the correct order of commits.

Our work aims to find the missing
CLFLUSHOPTs(efficiently flushes cache lines, opti-
mizing cache performance) and SFENCEs(ensures
the correct ordering of STOREs in the PM). While
there are attempts to address this PM debugging
challenge, they all rely on programmers to write and
debug software; furthermore, there is little work on
debugging automation. To overcome this challenge,
we propose a trace-based analysis method for detect-
ing and repairing PM bugs. Given an execution trace
and a desired property, our method first generates
a symbolic formula Φprogram ∧ ¬Φproperty to encode
the persistency-related program behaviors and check
them against the property. It guarantees that the
symbolic formula is satisfiable iff there exists a
PM bug. Our method also formulates and solves
the repair problem similarly using an off-the-shelf
constraint solver.

2 Problem statement

The example Consider the example in Listing 1,
which has two threads and three shared variables x, y
and z stored in the PM. If we assume that the se-
quential and concurrency-related constraints encode
the desired program behavior and thus must always
be enforced, then it is easy to notice possible viola-
tions of persistency constraints.

Let Si be the i-th statement of a thread in Listing 1.
Within the same thread, the CLFLUSHOPT instruc-
tions in S3 and S4 ensure that x and y are persisted
in a sequential order. Furthermore, the SFENCE in-
struction in S5 ensures that x and y are persisted be-
fore any statement after S5 in Thread 1.

Due to the write-read conflict between the write of x

in S2 and the read of x in S6, we must ensure that the
write of y in S6 takes effect after the write of x in S2

takes effect. Otherwise, the PM may be put in an in-
consistent state in the event of a power or system fail-
ure (where x has an old value but y has a new value).
Unfortunately, the current implementation does not
prevent the write of y in S6 from taking effect before
the write of x in S2 in the PM, since S7−S8 in Thread
2 may be executed before S4 − S5 in Thread 1.

Thread 1

1 y = 0
2 x = A
3 clflushopt(y)
4 clflushopt(x)
5 sfence ()
6
7
8
9 if x==y:

10 z = 0
11 clflushopt(z)
12
13

Thread 2

1
2
3
4
5
6 y = x
7 clflushopt(y)
8 sfence ()
9

10
11
12 r = z
13 clflushopt(r)

Listing 1: Motivating example.

Our method is designed to detect and then repair
this PM bug. One possible repair that our method
returns would be making S1 − S5 and S6 − S8 criti-
cal sections, e.g., by using the mutex lock and unlock
primitives.
The execution trace The input to our method is the
trace of a buggy program execution. Each event of the
trace, denoted trace[i], consists of four elements:

trace[i][0] OPCODE (which may be LOAD, STORE,
FLUSH, and FENCE)

trace[i][1] Target variable (variable to be stored in case of
STORE and FLUSH and a temporary variable in
case of load)

trace[i][2] Value to be loaded (value of importance in case of
Loads)

trace[i][3] Thread ID

In the trace ⟨S1, S2, S6, S7, S8, S3, S4, S5, S9, S10,
S11, S12, S13⟩, if a crash occurs right after S7, the PM
will be put into an inconsistent state. Using this in-
consistent state for failure recovery will cause y to have
the new value but x to have the old value (but x should
have been equal to y). Thus, at S9, the condition will
evaluate to False instead of True. This inconsistent

1



state will be further propagated and reflect in the value
of r and S12.

3 Methodology

Central to this work is calculating persistent time in-
tervals to find the STOREs subsequently accessed by
LOADs or STOREs, potentially resulting in PM viola-
tions. Defining the persistent time We define the
persistent time to be a time interval [lb, ub] that repre-
sents the range when a written value is persisted in the
PM. The written value may be persisted anytime after
executing the corresponding CLFLUSHOPT instruc-
tion and before executing the corresponding SFENCE.
Thus, the lower bound lb is defined as the time step
of the first corresponding CLFLUSHOPT. The upper
bound ub is defined as the time step of the first cor-
responding SFENCE. The written value is guaranteed
to be persisted in the PM before SFENCE.

Consider two types of common PM bugs: durabil-
ity violations and crash consistency violations: Dura-
bility bug means a PM STORE is not followed its
CLFLUSHOPT, in which case the written value is not
guaranteed to show up in the PM. In other words, if
a crash occurs, the written value may be lost. Crash
consistency bug means two PM STOREs should be
persisted in a certain order, but the order is not en-
forced properly. For example, if the write of y to PM
depends on the value of x written to PM earlier, then
we expect UBx < LBy. Otherwise, the PM may be
put into an inconsistent state in the event of a power
or system failure.
Computing the persistent time Our method cen-
ters around computing the persistent time interval for
all statements in the execution trace. After computing
the persistent time intervals, using them to detect PM
bugs will be straightforward.

To compute the persistent time intervals, we need
to find the program counter values for each statement.
For example, since we have 2 threads in our running
example, to maintain the sequential and concurrency
constraints of our current trace, S1, and S2 in Thread
1 will have the program counter values 1 and 2, re-
spectively. However, the program counter value of S6

can range from 3 to 6. Nevertheless, the only value
of program counter for S6 that does not violate PM
constraint is 6.

After finding the possible values of program counter
for each statement, the next step is to find the lower
and upper bounds of persistent time for each LOAD
and STORE. For every STORE(Si) statement, the
lower bound is the value(or range of values) for pro-
gram counter when a flush is first encountered for Si.
Similarly, the upper bound is the value(or range of val-
ues) of program counter for the first fence statement.

For every LOAD, the lower bound is the value(or range
of values) of its program counter. The upper bound
on the persistent time of a LOAD statement does not
have any significance, so we assign it the value “∞”.

We then model our bug detection using logical con-
straints, denoted Φprogram ∧ ¬Φproperty . We model
three kinds of constraints in Φprogram : sequential, con-
currency, and persistency. The sequential constraints
are used to fix the ordering of statements executed by
a single thread, while the concurrency constraints are
used to fix the ordering that should be maintained be-
tween two or more threads to ensure correct program
behavior. The persistency constraints encode the cor-
rect behavior of the PM. We model two types of bugs
in ¬Φproperty : durability violations and crash consis-
tency violations.

Durability constraint is encoded as follows:
UPPER_BOUND(Si) ≤ l ∀Si ∈ STORE , where,

l = last statement in the program.
Crash consistency constraint is encoded as fol-

lows: For Si ∈ STORE and Li ∈ LOAD such
that Li reads from Si: UPPER_BOUND(Si) ≤
LOWER_BOUND(Li)
Bug repair Repair of durability is achieved by the
insertion of CLFLUSHOPT instructions in the code.
We insert CLFLUSHOPT instructions for all mem-
ory locations that need to be written to the PM thus
eliminating all durability bugs.

Repair of crash consistency bugs is achieved by
two ways. The first method eliminates Crash con-
sistency bugs within a thread by inserting appropri-
ate SFENCES to ensure a particular ordering between
STOREs.

The second method eliminates crash consistency
bugs arising due to interleaving. This is achieved by
locking the access to shared variables. The lock en-
sures that before a context switch is made and an-
other thread can access the shared data, it should
be persisted in the PM. In our example, the ex-
ecution sequence ⟨S1, S2, S6, S7, S8, S3, S4, S5, S9, S10,
S11, S12, S13⟩ is repaired by locking the statements
from S2 − S5.
Implementation and results We have imple-
mented our approach as a tool. It uses LLVM to
generate traces of concurrent programs. We then
encode the persistency constraints and use the Z3
theorem prover to solve them. We repair the original
programs using the violated PM constraints by adding
appropriate locks, CLFLUSHOPTs and SFENCEs.

We are conducting thorough experiments, including
examining promising results from tests conducted on
simplified toy examples. Using our trace-based bug
detection and repair, we will conduct experiments in-
volving well-known concurrent data structures like Re-
dis and Memcached.

2


	Introduction
	Problem statement
	Methodology

