
SweepCache: Intermittence-Aware Cache on the Cheap
Yuchen Zhou
Purdue University

Jianping Zeng
Purdue University

Jungi Jeong*
Purdue University

Jongouk Choi
University of Central Florida

Changhee Jung
Purdue University

1 INTRODUCTION
Energy harvesting systems are becoming more prevalent in a wide
range of applications, e.g., vehicle tire pressure sensing, health and
wellness monitoring, and wearable computing, just to name a few.
However, due to the unstable nature of the energy sources, e.g., radio
frequency (RF) and Wifi, these applications experience frequent
and unpredictable power failure during program execution—thus
being called intermittent computation.

To resist frequent power failure, previous studies proposed a
nonvolatile processor (NVP) by leveraging byte-addressable non-
volatile memory (NVM) as the main memory and voltage monitor
based volatile data checkpointing. Whenever the monitor detects a
voltage drop below a predefined threshold, i.e., a sign of impending
power failure, NVP is interrupted to checkpoint all registers before
the failure; this is so-called just-in-time (JIT) checkpointing. In the
wake of the failure, NVP restores the registers and continues to
progress from the interruption point.

Nonetheless, the performance of NVP is limited by NVM accesses
that are the most expensive in terms of both energy consumption
and instruction latency. To address this problem, prior work pro-
poses cache-enabled designs, e.g., NVSRAM, checkpointing and
restoring not only the registers but also the cache across power fail-
ure. However, checkpointing the entire cache consumes too much
harvested energy thus limiting forward progress.

Moreover, all prior cache-enabled designs rely on JIT checkpoint-
ing which incurs nontrivial hardware complexity, e.g., the voltage
monitor, the backup/restoration logic, the nonvolatile flip-flops
(NVFFs1). Furthermore, the JIT checkpointing requires that the
backup should be performed in a failure-atomic way, which forces
energy harvesting systems to dedicate a large amount of hard-won
energy for the failure-atomic backup—leaving only a portion of
harvested energy for computation.

With that in mind, this paper proposes SweepCache, a novel
JIT-checkpoint-free design that achieves lightweight yet perfor-
mant intermittent computation for cache-enabled energy harvest-
ing systems by using intelligent compiler/architecture interaction.
SweepCache’s compiler partitions program into a series of recov-
erable regions—with their live-out registers checkpointed via store
instructions—so that the region boundary serves as a recovery point
across power failure. Then, to facilitate correct power failure re-
covery, SweepCache architecture runs them through region-level
persistence, i.e., all stores of a region including the checkpoint stores
must be persisted to NVM before the next region starts.

1Some prior work such as QuickRecall [2] checkpoints registers to NVM (not NVFFs),
but it is more time- and energy-consumingg [3].

*Now at Google.

Specifically, in case a region is power-interrupted, SweepCache
holds all data of its stores in an NVM-resident buffer—we call persist
buffer—before persisting them to the main memory (NVM), though
it lengthens the critical path of memory accesses by keeping the
buffer between the cache and NVM. During region execution, all
cachewritebacks (i.e., dirty cacheline evictions) are first quarantined
in the buffer; so it acts like a redo buffer for protecting the main
memory against the stores of power-interrupted regions. Thus, no
matter when power failure occurs, either the buffer contents or
their target NVM locations always remain intact. This serves as a
basis for correct recovery on top of region-level persistence. In other
words, for region-level persistence, when program control reaches
each region end, SweepCache 2 sweeps all dirty cachelines to the
persist buffer and then moves them to the NVM. This effectively
makes each region begin with a clean cache lacking dirty cachelines.

Note that such cache sweeping technically shortens the memory
access path; it turns out that the loads/stores of each region usually
make no dirty cacheline eviction, keeping the buffer empty since
the clean cache can afford to accommodate them. The upshot is
that thanks to the empty buffer, SweepCache can bypass the buffer
search on a cache miss, which would otherwise end up with two
NVM accesses, i.e., buffer search and NVM access (in case of the
buffer miss). This clean cache effect contributes to SweepCache’s
high performance—along with inter-region parallelism (Section 2.3).

2 SWEEPCACHE APPROACH
2.1 Compiler-Assisted Register Checkpointing
Rather than relying on JIT checkpointing, SweepCache leverages
compiler techniques to partition program into a series of regions
with live-out registers checkpointed (via stores) to NVM in a region
granularity and thus can be used for region-level failure recovery.
As shown in Figure 1(a), the stores are normal stores and ckpt stores
are register checkpointing stores. In particular, regions are par-
titioned based on the buffer size, ensuring that the buffer never
overflows (i.e., the buffer can hold all stores of each region).

2.2 Region-Level Store Persistence
Without the luxury of JIT checkpointing, SweepCache instead of-
fers persistence and recovery in a region granularity by deploying
the persist buffer as a redo buffer.

To be more specific, all the cache writebacks of each region are
first directed into the persist buffer (s-phase1). After that, the buffer
commits its content into NVM (s-phase2), as shown in Figure 1(b).
Temporally, the persistence process is split into three phases, which
correspond to writebacks before the region end (t-phase1), flushing

2The name SweepCache is inspired by its action of having the cache swept clean
between regions.

This paper [4] appears in MICRO’23 initially, Toronto, Canada Yuchen Zhou, Jianping Zeng, Jungi Jeong*, Jongouk Choi, and Changhee Jung

Region 1

Region partition and checkpoint the registers at a
region granularity.

(a) Compiler-Assisted Register Checkpointing

① s-phase1

 ② s-phase2

(b) Region-Level Store Persistence (c) Region-Level Failure Recovery

power failure

If Region N not finishes its s-
phase1, then

Source
Program

store
…

ckpt store
...

Region N

store
…

ckpt store
...

Region Boundary

Cachestore

ckpt store

triggers

write back

flush all the
dirty cache

lines

①

②

write back

Persist
Buffer

Persist
Buffer

NVM

Persist
Buffer

Persist
Buffer

NVM

Register
Checkpoint

Storage

Persist
Buffer

Persist
Buffer

NVM

Register
Checkpoint

Storage

Region N

Region N + 1

Region N

Region N + 1
Otherwise,

store
…

ckpt store
...

store
…

ckpt store
...

t-phase1

t-phase2

t-phase3

+ =

=

rollback to the beginning of
Region N.

rollback to the beginning of
Region N + 1.

Compiler Region 2
store
…

ckpt store
...

Region N

...

Buffer
Size

Buffer
Size

Buffer
Size

Persist
buffer

size

Figure 1: The high-level view of SweepCache compiler and architecture

dirty cachelines at the region boundary (t-phase2), and buffer com-
mit (t-phase3). In this way, SweepCache ensures correct region-level
persistence no matter when power failure happens in that either
the NVM or the buffer can always remain consistently available.

2.3 Inter-Region Parallelism
To achieve region-level persistence, a region cannot start executing
until the previous region is persisted. However, one critical issue
is that the persistence latency at each region boundary can signif-
icantly degrade performance. To mitigate this issue, SweepCache
introduces inter-region parallelism, which allows the next region to
speculatively execute as if the prior region were already persisted.
This helps to hide the persistence latency but ends up with struc-
tural hazards as adjacent regions compete for the persist buffer.
Specifically, before the prior region finishes its persistence, the next
region’s speculative execution can overwrite the buffer, thereby
making the region-level persistence fail to achieve crash consistency.
Ideally, each region should be assigned a separate buffer, but incur-
ring nontrivial hardware costs. Alternatively, the following region
should wait for the prior region to complete its persistence, hurting
the performance a lot. Fortunately, it turns out that two persist
buffers are sufficient to achieve high parallelism, effectively hiding
the persistence latency without compromising the crash consis-
tency guarantee. That is why two persist buffers are present in
Figure 1(b).

2.4 Region-Level Failure Recovery
SweepCache conducts appropriate recovery based on the point of
power failure, either before s-phase1 or after, as shown in Figure 1(c).
If a power outage occurs before s-phase1, SweepCache discards
the buffer contents and rolls back to the beginning of the power-
interrupted region. In case power failure happens after s-phase1
and during s-phase2, the region is considered successfully persisted,
then SweepCache re-executes the s-phase2 and restarts from the
next region’s beginning once the power comes back.

3 EVALUATION
We implement compiler techniques using LLVM 13.0.1. Perfor-
mance evaluation is conducted with benchmarks Mibench and
Mediabench on the gem5 [1] simulator with ARM ISA, utilizing
a real power trace collected from an RF reader that suffers fre-
quent power failure. As shown in Figure 2, SweepCache achieves

3.65x and 6.03x average speedups over two state-of-the-art schemes
ReplayCache and NvMR, respectively.

4.20 2.42
7.32

14.60

0

5

10

15

20

ReplayCache NvMR NVSRAM SweepCache
Sp

ee
d

u
p

 o
ve

r
N

V
P

Figure 2: Speedups over NVP with RFOffice power trace.

4 CONCLUSION
This paper presents SweepCache, a novel compiler and architec-
ture co-design approach that enables energy harvesting systems
to exploit a volatile cache in a performant and lightweight way.
To ensure correct power failure recovery, the compiler generates
recoverable regions while the architecture runs them in a failure-
atomic way. Thanks to SweepCache’s region-level persistence that
cleans up the cache across the region boundary, energy harvest-
ing systems do not have to rely on expensive just-in-time (JIT)
checkpointing, and thus they can fully utilize harvested energy
for computation. As a result, SweepCache achieves 3.65x and 6.03x
average speedups over two state-of-the-art work ReplayCache and
NvMR under RFOffice trace, respectively.

REFERENCES
[1] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali Saidi,

Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar Krishna, Somayeh Sar-
dashti, et al. The gem5 simulator. ACM SIGARCH computer architecture news,
39(2):1–7, 2011.

[2] Hrishikesh Jayakumar, Arnab Raha, and Vijay Raghunathan. Quickrecall: A low
overhead hw/sw approach for enabling computations across power cycles in
transiently powered computers. In 2014 27th International Conference on VLSI
Design and 2014 13th International Conference on Embedded Systems, pages 330–335.
IEEE, 2014.

[3] YiqunWang, Yongpan Liu, Shuangchen Li, Daming Zhang, Bo Zhao, Mei-Fang Chi-
ang, Yanxin Yan, Baiko Sai, and Huazhong Yang. A 3us wake-up time nonvolatile
processor based on ferroelectric flip-flops. In 2012 Proceedings of the ESSCIRC
(ESSCIRC), pages 149–152. IEEE, 2012.

[4] Yuchen Zhou, Jianping Zeng, Jungi Jeong, Jongouk Choi, and Changhee Jung.
Sweepcache: Intermittence-aware cache on the cheap. In Proceedings of the 56th
Annual IEEE/ACM International Symposium on Microarchitecture, pages 1059–1074,
2023.

2

	1 Introduction
	2 SweepCache Approach
	2.1 Compiler-Assisted Register Checkpointing
	2.2 Region-Level Store Persistence
	2.3 Inter-Region Parallelism
	2.4 Region-Level Failure Recovery

	3 Evaluation
	4 Conclusion
	References

