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Abstract—Non-volatile memories (NVMs) have been pivotal in
implementing deep neural networks in analog circuits. Analog
error-correcting codes (Analog ECCs) have been proposed to
make their computation more reliable. Although a number
of Analog ECCs have already been designed, how to develop
decoders for them remains largely unknown. The only decoder
known so far is for the analog [n, 1] repetition code.

This work explores the designs of neural networks as decoders
for Analog ECCs. Principled approaches are used for decoding,
including error locating and using regression to find the values
of errors. An ensemble method is used to improve the accuracy
of error locating. And a transformer-based model is shown to
achieve good regression performance (e.g., increasing the signal-
to-noise ratio by over 10 or 20 dB).

I. INTRODUCTION

Nonvolatile memories (NVMs) have been pivotal in the
realization of deep neural networks (DNNs) in analog circuits.
Analog chips for DNNs based on phase-change memories
(PCMs) and memristors have been developed [3]. The most
widely used operations in DNNs, the vector-matrix multiplica-
tions, are typically implemented using an NVM crossbar archi-
tecture, which computes at a much higher speed and power
efficiency than its digital counterpart. A main challenge for
the analog computing, however, is the accuracy of computing
affected by noise. To make the analog computing of vector-
matrix multiplications more reliable, Analog Error-Correcting
Codes (Analog ECCs) have been proposed recently [2].

An Analog ECC is defined as follows. Let G = (gi,j)k×n ∈
Rk×n be a real-valued k×n matrix. Then a linear [n, k] Analog
ECC C is C = {uG|u ∈ Rk} ⊆ Rn. Let [n〉 ≜ {0, 1, · · · , n−
1} for any n ∈ Z+. Given a vector e = (e0, e1, · · · , en−1) ∈
Rn, define its support with respective to a threshold ν ≥ 0
as Suppν(e) = {i ∈ [n〉 : |ei| > ν}. Then its Hamming
weight wH(e) is |Supp0(e)|. Let δ, ∆ ∈ R+ be two thresholds
with ∆ > δ. Consider two types of errors: limited-magnitude
errors (LMEs), and unlimited-magnitude errors (UMEs). An
error vector ε= (ε0, ε1, · · · , εn−1) ∈ Rn is called an LME
vector if εi ∈ [−δ, δ] for all i ∈ [n〉. An error vector e =
(e0, e1, · · · , en−1) ∈ Rn is called an UME vector of Hamming
weight w if wH(e) = w. Here LMEs model small ubiquitous
noise (which DNNs can often tolerate), and UMEs model more
significant errors (e.g., stuck memory cells, short cells, etc.).

Analog ECCs focus on correcting UMEs, especially those
UMEs whose magnitudes are above ∆. A decoder for a linear
[n, k] Analog ECC C is a function D : Rn → 2[n〉 that
returns a set of locations of UMEs. D is said to “correct
t UMEs” if for any noisy codeword y = c+ε+e (where
c = (c0, c1, · · · , cn−1) ∈ C is a codeword, ε is an LME
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vector, e is an UME vector with wH(e) ≤ t), we have
Supp∆(e) ⊆ D(y) ⊆ Supp0(e).

The above definition of error correction [2] focuses on find-
ing the locations of UMEs. So we also call it UME-locating.
In this paper, we further consider how to find the values of
UMEs, which we call error-regression, defined as follows.
An error-regression (ER) decoder is a function DER such
that given a noisy codeword y = c+ε+e and its decoding
result D(y) = {i0, i1, · · · , i|D(y)|−1} ⊆ [n〉, returns a vector
DER(y,D(y)) = (σi0 ,σi1 , · · · ,σi|D(y)|−1

) ∈ R|D(y)|. (Here
we let i0 < i1 < · · · < i|D(y)|−1.) For j ∈ [|D(y)|〉, σij is an
estimation of the value eij + εij , which combines the UME
and LME at location ij (as it is difficult to separate the two
errors in the same location).

We measure the performance of the two decoders as follows.
(This work focuses on the probabilistic decoding performance,
instead of worst-case performance.) Let Pc, Pε, Pe and Py

denote the probability distributions of c, ε, e and y = c+ε+e,
respectively. Let τ(y) = 1 if Supp∆(e) ⊆ D(y) ⊆ Supp0(e),
and let τ(y) = 0 otherwise. The accuracy of the decoder D,
Acc(D), is defined as Ey∼Py (τ(y)). (Here E(·) is the expec-
tation. In experiments, we replace the expectation by its em-
pirical average.) For the ER decoder DER, we measure its per-
formance by the Increase in Signal-to-Noise Ratio SNRinc de-
fined as follows. Let P ≜ Supp∆(e)∪D(y) be our “positions
of interest”, which include the positions where large UMEs
exist and need to be corrected (i.e., Supp∆(e)) and positions
where we actually correct errors (i.e., D(y)). Define σi = 0

if i /∈ D(y). Then SNRinc ≜ 10 log10
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A number of Analog ECCs have been designed [1], [2],
which focus on encoding (i.e., generator matrices) and their
theoretical error-correction capabilities. However, how to de-
sign decoders for Analog ECCs remains largely unknown.
The only known decoder is for the [n, 1] repetition code for
UME-locating, along with some discussions on bounding the
sizes of UMEs [2]. In this work, we explore the designs
of decoders for Analog ECCs based on neural networks for
both UME-locating and error-regression, and demonstrate the
performance of the decoders through extensive experiments.

II. MAIN RESULTS

A. Neural Decoders for UME-Locating

For i ∈ [n〉, let qi be 0 if ei = 0, be 1 if |ei| ∈ (0,∆], and
be 2 if |ei| > ∆. Let Q(e) = (q0, q1, · · · , qn−1) ∈ {0, 1, 2}n
be the quantized-UME pattern. Given that wH(e) ≤ t,
there are totally T ≜

t
i=0 2
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n
i


such patterns. Let Nα be

a T -class classification neural network that, given a noisy
codeword y = c+ε+e as input, classifies its UME vector
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e into one of those T patterns. Let Nα(y) denote the pattern
that Nα predicts to have the maximum likelihood. Then the
learning objective for Nα is to make Nα(y) = Q(e). Let
Nα(y) = (q̂0, q̂1, · · · , q̂n−1) ∈ {0, 1, 2}n. Let Dα(y) = {i ∈
[n〉|q̂i = 1 or 2}. Such a decoder Dα tends to have much fewer
false negatives (i.e., excluding i from Dα(y) when |ei| > ∆)
than false positives (i.e., including i in Dα(y) when ei = 0).
Such a property can be used to build a stronger decoder Dβ .

Let m ∈ Z+. Let N [0]
α , N [1]

α , · · · , N [m−1]
α be m indepen-

dently trained neural decoders as Nα above. For i ∈ [m〉, let
D[i]

α (y) be the output of N [i]
α . Let Dβ(y) = ∩i∈[m〉D

[i]
α (y).

Then Dβ is a neural decoder based on ensemble learning,
whose accuracy Acc(Dβ) can be optimized by tuning m.

Due to page limitation, we demonstrate the performance of
the neural decoders Dα and Dβ via two examples of Analog
ECCs. The first code C1 is a linear [12, 8] code from [2]. It
is proved that when ∆/δ ≥ 12, theoretically there exists a
decoder that can achieve perfect accuracy for UME-locating
when t = 1. The second code C2 is a linear [10, 4] code
from [1]. It is proved that when ∆/δ ≥ 16.45, theoretically
there exists a decoder that can achieve perfect accuracy for
UME-locating when t = 2. The generator matrices G of the
two codes are shown in an extended version of this paper [4].

Let u = (u0, u1, · · · , uk), where each ui is uniformly
distributed in [−1, 1]. Let codeword c = uG. Let each LME
εi be uniformly distributed in [−δ, δ]. For i ∈ [t + 1〉, let θi
denote the probability that wH(e) = i, with

t
i=0 θi = 1;

and each UME follows a normal distribution with mean 0 and
standard deviation η. Let Nα be a dense classification neural
network with three hidden layers of 64 neurons each, whose
input size is n (for the n numbers in a noisy codeword y) and
output size is T (as a probability distribution over T classes).

The experimental performance is as follows. For code C1,
let δ = 0.05, ∆ = 0.6 (so that ∆/δ = 12), θ0 = 0.2, θ1 = 0.8,
η = 0.6. We get Acc(Dα) = 95.8%. For code C2, let δ = 0.05,
∆ = 0.85 (so that ∆/δ = 17 > 16.45), θ0 = 0.04, θ1 = 0.32,
θ2 = 0.64, η = 0.85. We get Acc(Dα) = 94.6%. When ∆/δ
increases up to 30 (by increasing ∆ and let η = ∆), Acc(Dα)
further increases in general, as shown in Fig. 1 (a), where the
y-axis is 1−Acc(Dα).

Now consider the ensemble-based decoder Dβ . For code
C1, let ∆/δ = 12. When m increases from 1 to 10, Acc(Dβ)
increases from 95.8% to 98.9%. When m increases up to 300,
the values of 1−Acc(Dβ) are shown as the red curve in Fig. 1
(b). Dβ reaches the highest accuracy 99.6% when m = 228.
For code C2, let ∆/δ = 17. When m increases up to 200, the
values of 1−Acc(Dβ) are shown as the green curve in Fig. 1
(b). Dβ reaches the highest accuracy 99.8% when m = 12.

B. Neural Decoder for Error-Regression

For i ∈ [n〉, let q̃i = −2,−1, 0, 1, 2 when ei < −∆,
ei ∈ [−∆, 0), ei = 0, ei ∈ (0,∆], ei > ∆, respectively.
Let Q̃(e) = (q̃0, q̃1, · · · , q̃n−1) ∈ {−2,−1, 0, 1, 2}n, which
is a more refined error pattern compared to Q(e). Given that
wH(e) ≤ t, there are totally T̃ ≜

t
i=0 4
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i


such patterns.

Let Nγ be a T̃ -class classification neural network, which is
similar to Nα except that it has T̃ outputs instead of T outputs,

Fig. 1. Experimental performance of neural decoders. (a) Decoding failure
rate (i.e., 1 − Acc(Dα)) for different ∆/δ. (b) Decoding failure rate (i.e.,
1−Acc(Dβ)) for different values of m. (c) SNRinc for different ∆/δ.

and let Nγ(y) denote its predicted pattern given input y. (Its
learning objective is to make Nγ(y) = Q̃(e).) Let Nλ be a
Transformer neural network model (based on self-attention),
which takes y and Nγ(y) as input and outputs t numbers,
the first µ ≜ wH(Nγ(y)) of which are the predicted values
for the UME+LME values at the µ positions indicated by the
non-zeros in Nγ(y). (Here Nγ(y) serves the role of D(y),
and Nλ serves the role of the error-regression decoder DER.)

The neural decoder Nλ consists of a concatenation layer
(which combines y and Nγ(y) into a sequence of shape
(n, 2)), a positional-embedding layer, a transformer block, a
global average pooling layer and 3 dense layers.

The experimental performance is as follows. For code C1,
let δ, ∆, θ0, θ1 and η be as before (with ∆/δ = 12). We get
SNRinc = 16.82 dB. For code C2, let δ, ∆, θ0, θ1, θ2, η be
as before (with ∆/δ = 17). We get SNRinc = 9.52 dB. Fig. 1
(c) shows the SNRinc values for C1 and C2 for different ∆/δ.
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