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Introduction B Evaluation Results

e Dynamic structure of Dynamic Neural Networks (DyNNs) makes them very memory-hungry. ** DyNN-Offload enables larger model and larger batch size trained with
% Tensor offloading to CPU memory is an effective way to train large Al models. limited memory
0 def Node(): .
 Computation in dynamic neural network (DyNN) depends on the input. AR AR  DyNN-Offload allows for 8x and 6.3x larger deep and wide transformer models,
Differentinputs will activate different model components. 4 X UmTEERO o i respectively, compared to PyTorch-only solutions.
» Dynamism creates challenges to decide when to do tensor offloading ‘Zl #(thy)iép()fd
! s  With UVM, DTR[2] and DyNN-Offload, the largest batch size is 1.17%, 1.7%, and
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» We present DyNN-Offload, a memory management system to address ¥ sesien e i e 3.6x larger, compared with PyTorch-only solution.
the GPU memory capacity problem during DyNN training. 12 Sore for the tree | Inout Sentence: The cat sat on the ms : . .
: y capatity b 55y 5 . T y <+ DyNN-Offload effectively improves training throughput compared
to other memory-saving techniques.
Design Philosophy \ « UVM perform worst because the on-demand transfer.
“* The key to DyNN-Offload is learning for learning, which involves using knowledge proactively gained from other input * DyNN-Offload outperforms DTR (a state-of-the-art to save GPU memory by
problems and DyNNs, instead of relying on profiling that lacks the flexibility to handle the dynamism of DyNN training. recomputation) by 35% on average.
* For static NN, DyNN-Offload outperforms Microsoft ZeRO-Offload by 33% on
Methodology ™ aveage with three batch sizes, because of optimal partition decided by DyNN-
Offload.
*** Use a pilot model to predict operator execution order and proactively prefetch tensors from CPU to GPU o TreeCNN o UGAN Tree.LSTM . Jar-LSTM
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0:120:3: | ** Challengel: Tradeoff between pilot model complexity (model accuracy) > DyNN-Offload is a memory management system enabling large DyNN training with
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e SOI”t'OrT 1. Use. idiom based DVI\_'N representation to capture salient > Unlike the traditional profiling-based approach that lacks abilities to react to
(® Handle mis-prediction ® Memory properties of diverse DyNN architectures concisely. dynamism in DyNN, DyNN-Offload uses a learned approach to resolve dynamism
A | leefeess dtecor % Challenge2: Effective use of the pilot model: determining when and how and predict access order of tensors.
. migration to query the pilot model » DyNN-Offload shows that building a fast, accurate, and live ML model to guide
SIS T v' Solution 2: Pilot model inference and data prefetch with execution blocks \ performance optimization and analysis for DyNNs is feasible. /
Runtime memory management system instead of tensor obiects.
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