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1 Introduction
Deep learning (DL) is embracing dynamic neural network
(NN) architectures where the NN structure changes across
data samples [8]. Such dynamic neural networks (DyNN)
are different from the traditional static NN where a network
architecture (i.e., a dataflow graph) is defined using sym-
bolic expressions before execution and fixed during execu-
tion. A DyNN model may select its model components (e.g.,
layers [11], channel [14] or sub-networks [30]) conditional
on input samples, and change the structure and parame-
ters in the dataflow graph accordingly. DyNN decouples
the requirement for many parameters from computational
costs, which leads to reduction of training cost. Previous
works [4, 7, 26, 31, 34, 38] show that compared with static
NN, DyNN reduces training cost yet improve model predic-
tion performance. DyNNs have shown high computational
efficiency over variable-length sequences [32], trees [33], and
graphs [13]. They have also demonstrated strong representa-
tion capabilities and high adaptiveness in achieving desired
tradeoffs between accuracy and efficiency on the fly [8]. As
a result, DyNNs have been applied to many problems, such
as speech recognition [36], language modeling [7, 26, 27, 37],
image recognition [2, 5] and DL translation [3, 32, 34]. Re-
cently, DyNNs are applied to large language models (such as
GLaM from Google [6]), pushing the limit of scaling laws in
the age of generative models. It is believed that the DyNN is
one of a few techniques to improve efficiency and resource
utilization of future large models [15].

2 Motivation
DyNNs, as many other NNs, are often memory hungry [19,
23, 24, 39]. This is especially the case as large models are
gaining increasing popularity. For example, AlphaFold [28], a
DyNN model based on evoformers (a variant of transformer)
recently making breakthrough in protein structure predic-
tion, consumes 1,024 GB memory when using 128 amino
acids sequences of 256 in length [1]. As another example, a
switch-based mixture-of-expert (MoE) model with the simi-
lar parameter efficiency as T5-large (a static natural language
processing model) consumes at least 320 GB memory [21].
Clearly, training of large models is fundamentally limited

by GPU memory capacity. Distributed parallel training tech-
niques such as pipeline parallelism [16, 17] and tensor model
parallelism [29] go beyond the memory boundary of single
GPU by splittingmodel states acrossmultiple GPUs, enabling
training of massive models that would otherwise not fit into
a single GPU’s memory. However, these techniques require
enough GPUs to provide large aggregated GPU memory to
store the model states necessary for training; these GPUs
can be extremely expensive and beyond the affordability of
many small companies and organizations [22, 24].

Exploiting CPU memory to reduce the need of GPU mem-
ory for large model training has been explored [9, 10, 19,
20, 23–25]. Although tensor offloading to CPU memory is
effective in training static models, it is hard to be applied
to DyNNs. In particular, effectively using heterogeneous
memory (CPU and GPU memories) requires minimizing the
amount of communication between CPU and GPU or hiding
communication. To achieve this goal, existing efforts rely
on profiling-guided optimization (PGO) to record tensor ac-
cess orders using a few training iterations and plan tensor
prefetech between CPU and GPU for remaining iterations.
PGO has a fundamental assumption: the NN model must
be invariant, i.e., using a static computation graph where
tensor dimensions as well as data and control flows are stati-
cally fixed, and there are no complex data structures (such
as graphs and trees) in the dataflow graph. Hence, profiling
a few training iterations is enough to decide tensor prefetch
for upcoming operators.

However, the above assumption does not hold for DyNNs
due to their inherent dynamism. Depending on the input, the
DyNN selectively activates model components, introducing
irregular memory accesses and invalidating profiling results
collected in training iterations. As a result, communications
between CPU and GPU are largely exposed to the critical
path, leading to training throughput loss.
This paper presents a memory (tensor) management sys-

tem,DyNN-Offload1, for training largeDyNNs. DyNN-Offload
uses a new approach to guide tensor migration between CPU
and GPU to maximize GPU memory efficiency. In particular,

1The full paper will appear in HPCA’24 and can be found at
https://pasalabs.org/papers/2024/hpca24_dynn-offload.pdf

1

https://pasalabs.org/papers/2024/hpca24_dynn-offload.pdf


DyNN code snippet

Training data collection

9, 7, 1 … 7, 3
5, 8, 1 … 5, 1
7, 1, 1 … 1, 3
8, 4, 1 … 3, 8

Architecture Feature Matrix

Labeling
Ground Truth

Offline pilot model training

Op1 (t1, t2)
Op2 (t1, t2)
If()
…

...

The cat sat 
on the mat

DyNN’s input

DyNN dataflow 

8, 4, 1 … 3, 5
3, 9, 2 … 5, 2
5, 9, 4 … 1, 8

Pilot model training

Input feature of pilot model

Output of pilot model

Runtime memory management system

Pilot model inference

GPU memoryCPU memory

x
Handle mis-prediction Memory 

management 
and tensor 
migration

fe
at

ur
e 

la
ye

r

Input Embedding

6, 5, 2 … 1, 4...

M
LP

M
LP

M
LP

ou
tp

ut
 la

ye
r

pilot model

Op1 (t1, t2, t3)
Op2 (t1, t2)
if()
…

My apartment 
has a large 

kitchen

fe
at

ur
e 

la
ye

r
fe

at
ur

e 
la

ye
r

0,0,1
DyNN Model Type Embedding

(optional)

CNN-based
LSTM-based
Transformer-based
DyNN model type

Figure 1. The workflow of DyNN-Offload.

we explore the extent to which a pilot model, such as an
NN, can be used to increase predictability of tensor accesses
during the training process of a large DyNN. We use the
pilot model to timely prefetch tensors from CPU memory to
GPU memory to hide communication overheads.

Research challenges.Developing a model for GPUmem-
ory management requires overcoming a number of chal-
lenges. The first is how to minimize the performance impact
of querying the model (referred to as pilot model) for memory
management. The inference using the pilot model introduces
performance overheads to the critical path of DyNN training.
The second challenge is how exactly to use the pilot model.
DyNN-Offload queries the pilot model to decide when to
prefetch tensors from CPU to GPU memory with the goal
to maximize the overlapping between tensor migration and
DyNN training. Tensor prefetching is critical in minimizing
the overheads incurred from tensor migration. A possible
idea is to build the pilot model to predict the exact execution
order of operators. If this can be done, we could come upwith
a prefetch plan in a similar way to using PGO-guided tensor
prefetch for static NNs. However, this approach requires rich
output from the pilot model and high prediction accuracy,
which leads to high inference overhead of the pilot model.
Hence, there is an important tradeoff between the usefulness
(to guide tensor prefetch) and performance overhead.

3 Overview
The overall architecture of DyNN-Offload comprises three
main components shown in Figure 1.
The design of the pilot model centers around how to en-

able efficient enforcement and yet provide high pilot-model
accuracy. We achieve this goal based on two observations: (1)
operators in machine learning (ML), though rich in interfaces
and algorithms, can be identified by a combination of six
pervasive and expressive memory access patterns. (2) Tensors
typically migrate in batches in order to fully utilize inter-
connect bandwidth. For those tensors that migrate together,
there is no need to predict the exact execution order of the
operators that reference the migrating tensors. This observa-
tion relaxes the requirement of using fine-grained execution
order to plan tensor prefetch, which is the central technique
used in all PGO-based solutions for static NNs [20, 23, 25, 35].

Based on the first observation, the input features and out-
put of the pilot model can benefit from a compact represen-
tation based on six program idioms to encode the DyNN’s
architecture and indicate execution order of operators. This
compact representation reduces the input feature space, lead-
ing to a simpler pilot model. Based on the second observation,
the pilot model implicitly partitions a DyNN with resolved
dynamism into multiple execution blocks, and only predicts
the execution order of these blocks. This leads to an easier
prediction task, and hence a lighter pilot-model and higher
prediction accuracy. The above techniques address the chal-
lenge on the performance overhead of the pilot model.

To address the challenge in the planning of tensor prefetch-
ing, DyNN-Offload learns how to hide tensor migration
through the training of the pilot model. During the pilot
model training, the DyNN is transformed to a static one and
then an existing PGO solution is used to decide execution
blocks. Such transformation allows DyNN-Offload to cre-
ate training samples with the knowledge of optimal DyNN
partitioning for the pilot model to learn.

4 Evaluation
DyNN-Offload supports a variety of DyNNs and works on
real production datasets without the need of refactoring
DyNNs. DyNN-Offload significantly improves GPU memory
efficiency: given a constraint on GPU memory consumption,
DyNN-Offload enables 8× larger DyNN training on a single
GPU compared with using PyTorch alone (unprecedented
with any existing solution); Evaluating with AlphaFold (a
production-level, large-scale DyNN), we show that DyNN-
Offload outperforms unified virtual memory (UVM) [18] and
dynamic tensor rematerialization (DTR) [12], the most ad-
vanced solutions for DyNN, by 3× and 2.1× respectively
in terms of maximum batch size. DyNN-Offload also re-
duces training time of the DyNN by 35% (up to 1.38×) com-
pared to UVM and DTR, while other solutions (e.g., ZeRO-
Infinity [22]) cannot work for DyNNs.
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