
On Inter-PMO Security Attacks [1]
Naveed Ul Mustafa

University of Central Florida
Yan Solihin

University of Central Florida

I. MOTIVATION

Please click here for PDF of original paper. When integrat-
ing Persistent Memory (PM) to computer systems, one way to
view PM is to host persistent data structures encapsulated in
objects, referred as Persistent Memory Objects (PMOs) [4],
[5], that are managed by the OS. A few existing studies address
security threats arising from PMO model, i.e. using PM as
system objects hosting persistent data. For example, Mustafa
et al. [2] showcase inter-process attacks where one process
(payload) successfully affects the execution of another process
(victim) by overwriting pointers of a PMO shared between
them. Such an attack requires the payload and the victim to
share a common PMO (simultaneously or successively over
time).

In this paper, we demonstrate that an adversary can launch
successful attacks on a victim even when they do not share a
PMO, whether simultaneously or over time. We refer to this
new attack as an inter-PMO attack. The attack only requires
a connectivity path of PMOs between processes including the
payload and the victim, and exploits the path to propagate cor-
ruption. By relaxing the requirement of PMO sharing needed
in the inter-process attack [2], the new attack significantly
expands the capability of an adversary, and warrants the need
to protect all PMOs irrespective of whether they are shared or
not between the payload and the victim.

II. BACKGROUND

PMO is a general system abstraction for holding persis-
tent data managed by operating system (OS) without file-
backing [5]. Data in a PMO is held in regular data structures.
PMOs are managed by the OS which may provide filesystem-
like namespace and permission settings to PMOs. Key prim-
itives for a PMO are attach(), detach() and psync() system
calls [4]. For a process to work on PMO data, it calls attach()
system call to map the PMO into its address space. Once
attached, the process can access it with regular loads/stores,
without involving the OS. psync() persists PMO updates in
a crash-consistent way. detach() unmaps the PMO from the
address space, making it inaccessible. After detached, any
load/store to the address region where the PMO used to map
result in protection faults.

This work was supported in part by the U.S. Office of Naval Research
through Grant N00014-23-1-2136 and Grant N00014-20-1-2750, and by the
National Science Foundation through Grant 1900724 and Grant 2106629.

III. THREAT MODEL

We considers a victim process lacking known memory
safety vulnerabilities, a payload process having exploitable
vulnerabilities, and transmitter process(es) that may or may
not have vulnerabilities. In case of a single transmitter, it
shares a PMO with the payload and a separate one with
the victim. The goal of an adversary is to use the payload
process in order to compromise the victim process. An attack
can initiate by exploiting payload vulnerabilities, transmitting
memory corruption over transmitter(s), and eventually impact-
ing the victim’s execution. This model differs from [2] in not
mandating a shared PMO between the payload and victim. The
adversary is assumed to possess knowledge of addresses, data
structures, and layout of PMOs within the transmitter chain
but lacks legitimate access to any of them. Data structures
in PMOs may include buffers and pointers. A trusted system
software, like the OS, enforces address space isolation between
processes, and OS-managed permission checks restrict access
to PMOs. Unauthorized access to a detached PMO leads to a
segmentation fault. However, reading and writing to a legally
attached PMO are permitted.

IV. EXAMPLE ATTACK

A. Data Disclosure Attack By Hijacking Transmitters

Suppose that SQLite [3] is ported to PMOs with each
table represented by a persistent B+ tree. Figure 1 shows a
sample database consisting of PMO0, PMO1, and PMO2

containing faculty and prof tables (B+ Trees rooted at Src
and Dst PMO fields, respectively) of CS, Phys, and Maths
departments, respectively. Head and Tail fields are pointers to
linked-list of free nodes. P0 is payload, P1 is transmitter, and
P2 is victim process. The attack assumes transmitter P1 has
memory safety vulnerabilities.

Head Tail

PMO0

P0Payload TransmitterP1 Victim

CS_faculty and CS_prof Phys_faculty and Phys_prof

Src Dst

fp1-Δ

M1

Head Tail

PMO1

Src Dst

PMO1.src

PMO2.src

Maths_faculty and Maths_prof

Head Tail

PMO2

Src Dst

P2

PM
O
1 .D
st

PMO0

Fig. 1: Data disclosure attack. P0 and P2 share no PMO.

To launch the attack, adversary discovers a function pointer
fp1 in the volatile memory portion of P1’s address space and
exploits P1’s memory vulnerabilities to inject a code block
M1, shown in Figure 2 (left), in its heap region. Note that ∆ is

https://ieeexplore.ieee.org/abstract/document/10098256


1 attach(PMO0);
2 attach(PMO1);
3 *(PMO0.Src)=*(PMO1.Dst);
4 node=*(PMO1.Head);
5 node->fd=&(PMO2.Src);
6 *(PMO1.Tail)=&(PMO1.Src)

;

1 void* allocNode(){
2 lastNode=*Tail;
3 firstNode=*Head;
4 lastNode->fd=

firstNode->fd;
5 *Head=firstNode->fd;
6 return firstNode;}

Fig. 2: Injected code M1 (left) and library code to allocate a
node from free list (right).

address displacement between a free-list node and its forward
pointer (fd) field. In the first attach-detach session, adversary
uses payload process P0 to attach PMO0, overwrites the
forward pointer fd of first node of its free list such that it
points to M1 and also overwrites the Tail field to point to
location of fp1 minus ∆ (shown by orange arrows in Figure
1). Finally, adversary psyncs PMO0, detaches it, and waits.

In the second attach-detach session, P1 attaches PMO0 and
PMO1 and allocates a node from free-list of PMO0. The
allocNode() library function (Figure 2, right) removes first
node from the list. Since Tail was overwritten by adversary,
lastNode points to fp1 − ∆ (line 2). The left side of the
assignment statement in line 4, lastNode ->fd, points to
a location pointed by lastNode plus address displacement
between lastNode and its fd field i.e. (fp−∆)+∆ = fp.
Since firstNode->fd was set by adversary to point to M1,
line 4 makes fp point to M1. Finally, when the function pointer
is used by the P1, M1 is executed. Execution of M1 (Figure
2, left) redirects PMO0.Src to root node of destination B+
tree of PMO1 as shown by red arrow in Figure 1. M1 also
overwrites PMO1’s Tail field and fd pointer of first node in
the free list, shown by orange arrows. Finally, M1 psyncs
PMO0 and PMO1, and detaches them. In the third attach-
detach session, P2 attaches PMO1 and PMO2, and allocates
a free node from free-list of PMO1 resulting in redirection
of PMO1.Src to PMO2.Src shown by red arrow in Figure
1.

Consider that each process independently executes a query
on an attached PMO to extract records from its faculty
table (i.e., source B+ tree) with the designation of profes-
sor and insert them into professor table (i.e., destination
B+ tree). Now assume following sequence of query execu-
tion. P2 attaches PMO1 and PMO2, executes query on
Phys_faculty table. Since, PMO1.Src was redirected,
the query extracts records from Maths_faculty table (i.e.
PMO2) of victim and inserts them to Phys_prof table.
Afterwards, P2 psyncs and detaches both PMOs. Next, P1 at-
taches PMO0 and PMO1, executes query on CS_faculty
table that actually extracts records from Phys_prof ta-
ble (including those records that were copied over from
Maths_faculty) and insert them to CS_prof table, (as
PMO0.DSR Src was redirected). Finally, when P1 psyncs
and detaches PMO0, process P0 can attach PMO0 to read
records of Maths_prof inserted in CS_prof. The attack
demonstrates that private data (i.e., records from PMO2) of

the victim P2 is disclosed to attacker by payload P0 process
even when they do not share a PMO.

B. Data Disclosure Attack Without Hijacking Transmitters
We observe that above attack can be launched even with-

out hijacking P1. In such case, neither address discovery
for function pointers nor code injection is needed. Though
attack steps become more convoluted but not impossible. As
an example, payload P0 can attach PMO0 and overwrite
its Tail field with the address of PMO0 and Head field
with the address of PMO1.DST , shown by blue arrows in
Figure 1. Assuming that adversary knows address of PMO1

and its layout, address of PMO1.DST is calculated as
address(PMO1) + Size(SRC). Finally P0 psyncs PMO0,
and detaches it. When P1 attaches both PMO0 and PMO1,
and allocates a node from free-list of PMO0, it results in
redirecting PMO0.SRC to root node of destination B+ tree
of PMO1, as shown by red arrow in Figure 1, achieving same
affect as in first example attack. In the same way, payload
can perform the second redirection shown in red in Figure 1
by carefully overwriting PMO0 provided that attach-detach
sessions are performed in desired sequence by the transmitter
process P1. Details of these steps are not shown in the figure
due to limited space.

V. ATTACK PROTOTYPING AND EVALUATION

We implemented a proof of concept inter-PMO attack illus-
trated in Figure 1, with two transmitters, on Greenspan PMO
system [4] that was built on Linux 5.14.18 to support PMO
creation and management. We consider an attack successful
when P0 can obtain a record of Math’s professor. We define
time budget as the duration within which an attack is attempted
and success rate as the number of successful attacks divided
by total number of attack attempts for a given time budget.
We observe that the success rate is 1 for time budgets greater
than or equal to 0.75 seconds and 0 otherwise. This shows
that 0.75 second is the minimum time for the example attack
to succeed. The attack fails for lower time budgets as the
execution of queries by P1, P2 (transmitters) and P3 (victim),
and the propagation of results to PMO0 (payload) takes at
least 0.75 seconds.

REFERENCES

[1] U.M. Naveed, S. Yan., “Persistent Memory Security Threats to Inter-
Process Isolation,” IEEE Micro. 2023; 43(5): 16-23.

[2] U.M. Naveed, X. Yuanchao, S. Xipeng, S. Yan., “Seeds of SEED:
New Security Challenges for Persistent Memory,” In IEEE International
Symposium on Secure and Private Execution Environment Design
(SEED) 2021 Sep 20 (pp. 83-88).

[3] Bhosale, S., Patil, T. & Patil, P. Sqlite: Light database system. Int. J.
Comput. Sci. Mob. Comput. 44, 882-885 (2015)

[4] G. Derrick, U.M. Naveed, K. Zoran, H. Mark, S. Yan., ”Improving the
Security and Programmability of Persistent Memory Objects,” In IEEE
International Symposium on Secure and Private Execution Environment
Design (SEED), 2022 Sep 26 (pp. 157-168).

[5] X. Yuanchao, S. Yan, S. Xipeng, “MERR: Improving security of
persistent memory objects via efficient memory exposure reduction
and randomization,” In Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming Languages and
Operating Systems 2020 Mar 9 (pp. 987-1000).


	Motivation
	Background
	Threat Model
	Example Attack
	Data Disclosure Attack By Hijacking Transmitters
	Data Disclosure Attack Without Hijacking Transmitters

	Attack Prototyping and Evaluation
	References

