
ReFloat: Low-Cost Floating-Point Processing in ReRAM for
Accelerating Iterative Linear Solvers

Linghao Song†, Fan Chen‡, Hai Li§, Yiran Chen§

†University of California, Los Angeles ‡Indiana University Bloomington §Duke University

ABSTRACT
Resistive random access memory (ReRAM) is a promising
technology that can perform low-cost and in-situ matrix-
vector multiplication (MVM) in analog domain. Scientific
computing requires high-precision floating-point (FP) pro-
cessing. However, performing floating-point computation in
ReRAM is challenging because of high hardware cost and
execution time due to the large FP value range. In this work
we present REFLOAT, a data format and an accelerator ar-
chitecture, for low-cost and high-performance floating-point
processing in ReRAM for iterative linear solvers. REFLOAT
matches the ReRAM crossbar hardware and represents a
block of FP values with reduced bits and an optimized expo-
nent base for a high range of dynamic representation. Thus,
REFLOAT achieves less ReRAM crossbar consumption and
fewer processing cycles and overcomes the noncovergence
issue in a prior work. The evaluation on the SuiteSparse matri-
ces shows REFLOAT achieves 5.02× to 84.28× improvement
in terms of solver time compared to a state-of-the-art ReRAM
based accelerator.

1. INTRODUCTION
Scientific computing models a complex system with par-

tial differential equations (PDEs), and in practice, the PDEs
are converted to a linear system Ax = b, and then solved
through an iterative solver. The floating-point (FP) sparse
matrix-vector multiplication (SpMV) is the key computation
kernel. With the approaching the end of Moore’s Law [7],
ReRAM is considered as a promising candidate for imple-
menting processing-in-memory (PIM) accelerators [1, 3, 6]
that can provide orders of magnitude improvement of com-
puting efficiency.

ReRAM-based processing engines for matrix-vector mul-
tiplication are fixed-point hardware in nature due to the fact
that the matrix and the vector are respectively represented
in discrete conductance states and voltage levels [8]. Many
accelerators [1, 3, 6] are built with ReRAM and achieve rea-
sonably good classification accuracy in machine learning, but
they are for fixed-point processing.

It is non-trival to support floating-point processing in ReRAM.
Take 64-bit double-precision number as an example, each
floating-point number consists of a 1-bit sign (s), an 11-bit ex-
ponent (e), and a 52-bit fraction (f). The value is interpreted
as (−1)s × (1.b51b50...b0)× 2(e−1023), yielding a dynamic
data range from ±2.2×10−308 to ±1.8×10308. If ReRAM
is used to support floating-point MVM operation, a large
number of crossbars will be provisioned for fraction align-
This work is published at SC 2023 [5]. The lead author Linghao

Song was a Ph.D. student at Duke University at the time this work
was performed, and the preliminary version of this work appears as
Chapter 5 of Linghao’s doctoral dissertation [4].

ment, resulting in very high hardware cost (illustrated the
problem in Section 3). To reduce the overhead, Feinberg et
al. [2] proposes to truncate the higher bits in exponents, e.g.,
using the low 6 bits or module 64 of the exponent to represent
each original value, while keeping the number of fraction
bits the unchanged (52 bits). This ad-hoc solution does not
ensure the convergence of iterative solves. Moreover, it may
unnecessarily incur the hardware and execution time cost for
the full precision of fractions.

2. KEY INSIGHTS
The key insight of our solution is the exponent value local-

ity among the elements in a matrix block. If we consider the
whole matrix, the exponent values can span a wide range, e.g.,
up to 11 for a matrix, but the range is smaller within a block,
e.g., at most 7 for the same matrix. It naturally motivates
the idea of choosing an exponent base eb for all exponents
in a block, and storing only the offsets from eb. For a matrix
block, while the absolute exponent values can be large, the
variation is not. For most blocks, by choosing a proper eb,
the offset values are much smaller than the absolute exponent
values, thus reducing the number of bits required.
Hardware Cost and Performance Analysis. To map the FP
matrix to ReRAM accelerators, we need C ReRAM crssbars.
C = 4× (2eM + fM +1), where eM and fM respectively is the
bit length for the exponent and fraction of a matrix. The
hardware cost increases exponentially with eM while linearly
with fM . To process a FP multiplication in ReRAM, it takes
T cycles. T is calculated as T = (2ev + fv +1)+(2eM + fM +
1)−1, where ev and fv respectively is the bit length for the
exponent and fraction of a vector. We can observe that the
computation latency increases exponentially with both ev and
eM , while linearly with fv and fM .
Truncation and Non-convergence. The design of the state-
of-the-art ReRAM-based accelerator [2] for floating-point
SpMV is driven exactly by the conclusion of our analysis—
reducing the number of bits for exponent. However, this
solution adopts an ad-hoc approach that simply truncates a
number of high order bits in exponent. Specifically, with the
low 6 bits of exponent, it uses module 64 of the exponent
to represent each original value. Unfortunately, bit trunca-
tion may lead to significantly slower convergence and, more
importantly, non-cvonvergence. Thus, the solution proposed
in [2] may break the correctness of the iterative solver.
Opportunity: Value Locality While the number of exponent
bits has a major impact on the hardware cost and computation
cycles, sufficient accuracy of exponents is needed to ensure
convergence. We leverage an intuitive observation of matrix
element values—exponent value locality—to significantly the
number of bits for exponents while keeping enough accuracy.
In the real-word data matrix, the values of closely located

4

Shift & Add

OutBuffer

…

1
f 0

b0b1

 D
riv

er

D
riv

er

 D
riv

er

fg-1 0

InBuffer0

4
fg-1 0

4
fg-1 0

5
fg 0

…
63 52 0
6

7 eb

8 ebv

…
63 52 0
9

�

�

(b) A processing engine. (c) A crossbar cluster.

1 1
fv 0 2e+f2ev+fv

2
fx-1 0

3
fc-1 0

S/HADC S/HADC S/HADC

�

�

�

…

�

�

�
Shift

A

B

C

(d) A vector converter.

O
V

 B
uf

fe
r

…

IV Buffer

M
A

C
s

(a) Overview.

Sc
he

du
le

r

Figure 1: (a) the accelerator architecture overview. Architectures of (b) a processing engine for floating-point MVM on a
matrix block, (c) a crossbar cluster for fixed-point MVM, and (d) a vector converter.

0
0 0

0 0
0 0 0 eb

1028

1029

1030

1031 ⇥

1540
1542

1541
1543

0
1
2
3

0 1 2 3
(1028,1540)

(a) A block in full precision. (b) A block in ReFloat.

8

1 2 3
4 5

76

0
0 0
0 0

0 0 0 8

1 2 3
4 5
76

ve
ct

or

ve
ct

or
⇥ebv

Figure 2: Comparison of a matrix block (a) in original
full precision format and (b) in REFLOAT format.

…
63

0
sign

exp (11 bits) frac (52 bits)

do
ub
le

R
eF
lo
at

b51 b50
b49

sign

05010
eb

(b) Value conversion.(a) Index conversion.

…(iii,jjj) …(),

31 310 0

(ii,jj) (),

10 10

…(i,i) …(),

29 290 0

b31 - b2 b31 - b2
Opt.

Figure 3: The conversion of index and value in floating-
point format to REFLOAT format.

elements are not too far from each other. The values are
around a common base value.

Based on these insights, we propose REFLOAT, a princi-
pled approach with a novel data format and an accelerator
architecture to reduce FP processing cost in ReRAM. In
REFLOAT, we reduce bit length for the exponent with the
exponent offsets from a base, rather than truncating expo-
nents, are processed by a flexible and fine-grained FP number
representation.

In REFLOAT, we naturally control the accuracy by the
number of bits e allocated for the offsets, which is less
than the number of exponent bits necessary to represent
the offsets precisely. When an offset is larger (smaller)
than the largest (smallest) offset representable by e bits,
the largest (smallest) value of e bits is used for the offset.
With e-bit exponent offset, the range of exponent values is
[eb −2(e−1)+1,eb +2(e−1)−1]. Intuitively, given e and eb,
this system can precisely represent the exponent values that
fall into a “window” around eb, while the “size of the win-
dow” is determined by 2(e−1). Then, selecting eb becomes an
optimization problem that minimizes the difference between
the exponents of the original matrix block and the exponents
with eb and e-bit offsets.

3. MAIN CONTRIBUTIONS AND RESULTS
A Novel Data Format. We propose a novel data format for

low-cost floating-point processing in ReRAM for scientific
computing. We present the conversion method from default
IEEE floating-point format to the proposed data format and
the computation method with the proposed data format.
An Accelerator Architecture. We present an accelerator
architecture to support the proposed data format. Existing
computing platforms can only emulate the functionality of
REFLOAT data format, but a hardware architecture is needed
to fully amplify the processing efficiency.

We open-sourced the implementation of REFLOAT and the
work [5] has been awarded three ACM artifact badges.
Key Results. Our experiments show that REFLOAT achieves
a speedup of 5.02× to 84.28× compared with a state-of-the-
art ReRAM-based accelerator [2] for scientific computing
even with the assumption that the accelerator [2] functions
the same as FP64 solvers.. For the 12 matrices evaluated
in iterative solvers, only 3 bits for exponent and 8 or 16
bits for fraction are sufficient to ensure convergence. In
comparison, [2] uses 6 bits for exponent and 51 bits for
fraction without guaranteeing convergence.
Key Contributions.
• We present the insights on leveraging data locality in real-
word matrix for the opportunities to compress data represen-
tation and process in low hardware cost in ReRAM.
• We propose REFLOAT, a data format with the conversion
method (shown in Figure 3) and the computation for floating-
point processing in ReRAM which consumes less number of
crossbars (hardware resource) and less cycles.
• We present an accelerator architecture (shown in Figure
1) to support the proposed REFLOAT data format for full
potential.

REFERENCES
[1] Ping Chi et al. Prime: A novel processing-in-memory architecture for

neural network computation in reram-based main memory. In ISCA,
2016.

[2] Ben Feinberg et al. Enabling scientific computing on memristive
accelerators. In ISCA, 2018.

[3] Ali Shafiee et al. Isaac: A convolutional neural network accelerator
with in-situ analog arithmetic in crossbars. In ISCA. IEEE, 2016.

[4] Linghao Song. Accelerator Architectures for Deep Learning and Graph
Processing. Duke University, 2020.

[5] Linghao Song, Fan Chen, Hai Li, and Yiran Chen. Refloat: Low-cost
floating-point processing in reram for accelerating iterative linear
solvers. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, pages
1–15, 2023.

[6] Linghao Song et al. Pipelayer: A pipelined reram-based accelerator for
deep learning. In HPCA. IEEE, 2017.

[7] M Mitchell Waldrop. The chips are down for moore’s law. Nature News,
530(7589):144, 2016.

[8] H-S Philip Wong et al. Metal–oxide rram. Proc. of IEEE, 2012.

	Introduction
	Key Insights
	Main Contributions and Results

