
RackBlox: A Software-Defined Rack-Scale Storage
System with Network-Storage Co-Design∗

Benjamin Reidys† Yuqi Xue† Daixuan Li† Bharat Sukhwani‡
Wen-mei Hwu† Deming Chen† Sameh Asaad‡ Jian Huang†

University of Illinois Urbana-Champaign† IBM T. J. Watson Research Center‡

Abstract
Software-defined networking (SDN) and software-defined
flash (SDF) have been serving as the backbone ofmodern data
centers. They are managed separately to handle I/O requests.
At first glance, this is a reasonable design by following the
rack-scale hierarchical design principles. However, it suffers
from suboptimal end-to-end performance, due to the lack of
coordination between SDN and SDF.
In this paper, we co-design the SDN and SDF stacks by

redefining the functions of their control plane and data plane,
and splitting them up within a new architecture named Rack-
Blox. RackBlox has three major components: (1) coordinated
I/O scheduling, to coordinate the effort of I/O scheduling
across the network and storage stack to achieve predictable
end-to-end performance; (2) coordinated garbage collection
(GC), to coordinate the GC activities across the SSDs in a rack
to minimize their impact on incoming I/O requests; (3) rack-
scale wear leveling, to enable global wear leveling among
SSDs in a rack by periodically swapping data, for achieving
improved device lifetime for the entire rack. We implement
RackBlox using programmable SSDs and a programmable
switch. Our experiments demonstrate that RackBlox can
reduce the tail latency of I/O requests by up to 5.8× over
state-of-the-art rack-scale storage systems.

1 Background and Motivation
Software-defined infrastructure has become the new stan-
dard for managing data centers, as it provides the flexibility
to customize hardware resources for applications [3]. As the
backbone technology, software-defined networking (SDN)
allows network operators to manage network resources
through programmable switches. Since SDN has demon-
strated its benefits, software-defined flash (SDF) [2, 3] has
also been developed. Similar to SDN, SDF enables upper-level
software to manage the low-level flash chips for improved
performance and resource utilization [2, 3].

Both SDN and SDF have their own control plane and data
plane, and provide programmability for developers to define
and implement their policies for resource management and
scheduling. However, SDN and SDF are managed separately
in modern data centers. At first glance, this is reasonable
by following the rack-scale hierarchical design principles.
However, it suffers from suboptimal end-to-end performance,
due to the lack of coordination between SDN and SDF.
Although SDN and SDF make the best effort to achieve

their quality of service, they do not share their states and
lack global information for storage management and schedul-
ing, making it challenging to achieve predictable end-to-end
performance. Prior works [1] proposed various software
∗This work was published at SOSP 2023 [4]

Switch Data Plane

L2/L3 

Routing

Data 

Cache

Network

Statistics

Network Control Plane

…

T
o

R
S

w
it
c
h

S
D

F

Storage Server Storage Server Storage Server

Coordinated I/O 

Scheduling

Coordinated GC

Rack-scale 

Wear Leveling

Global SSD-Level 

Mapping Table

SSD

SSD

SSD

SSD

SSD

SSD

Local Wear Leveling

Device-Level Mapping

SSD Virtualization

Figure 1. System overview of RackBlox.
techniques such as token bucket and virtual cost to enforce
performance isolation across the rack-scale storage stack.
However, they treat the underlying SSDs as black boxes, and
cannot capture hardware events, such as garbage collection
(GC) and I/O scheduling. Thus, it is challenging to achieve
predictable I/O performance across the entire rack.

2 Design and Implementation
In this paper, we rethink the software-defined network and
storage hierarchy, and propose a new software-defined archi-
tecture, RackBlox as shown in Figure 1. We first decouple the
storage management functions (i.e., flash translation layer)
of SSDs, and integrate the appropriate functions such as GC
and wear-leveling into the SDN to enable SDN/SDF state
sharing and global resource management. Second, we use
state sharing in the data plane to coordinate I/O scheduling.
Third, to alleviate the GC overhead, RackBlox exploits the
idle data replicas in the rack and redirects I/O requests that
would be delayed by GC. Fourth, RackBlox enables rack-scale
wear-leveling using a two-level wear leveling mechanism.
Decoupling the Storage Management. As the ToR switch
has limited hardware resources, we keep the essential func-
tions for the virtualized SSD (vSSD) management locally on
storage servers. They include SSD virtualization, device-level
mapping, and local wear leveling for SSDs in a server.

To make the ToR switch aware of the states of vSSDs in a
rack, RackBlox maintains two tables as shown in Figure 2: (1)
replica table, which tracks the GC status and replica of each
vSSD; (2) destination table, which tracks the server IP and
GC status of each vSSD. For state communication between
the ToR switch and storage servers in the rack, RackBlox
defines a custom network packet format based on regular
network protocols. The packet has one field for the operation
type, one for the vSSD ID, and one for the measured network
latency as the packets are transferred through the network.
The payload is filled according to the operation type.
Coordinated I/O Scheduling. RackBlox tracks I/O requests
across the entire stack: (1) 𝑁𝑒𝑡𝑡𝑖𝑚𝑒 : the elapsed time in the

1



vSSD_ID GC Status Replica vSSD_ID
vSSD1 1 vSSD12

... ... ...

vSSD_ID GC Status Server IP
vSSD1 1 10.0.0.16

... ... ...
vSSD12 0 10.0.0.20

(a) Replica Table

(b) Destination Table

Figure 2. RackBlox tables placed in the ToR switch.
network since the I/O request is issued until it reaches the
storage server; (2) 𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑡𝑖𝑚𝑒 : the delayed time in the I/O
queue of the storage stack; (3) 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑡𝑖𝑚𝑒 : the predicted time
to transfer the response back over the network. To manage
I/O scheduling in SDF, RackBlox uses 𝑃𝑟𝑖𝑜𝑠𝑐ℎ𝑒𝑑 = (𝑁𝑒𝑡𝑡𝑖𝑚𝑒

+ 𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑡𝑖𝑚𝑒+ 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑡𝑖𝑚𝑒 ) as the scheduling priority. As
RackBlox issues I/O requests from the queue in the storage
stack with the maximum 𝑃𝑟𝑖𝑜𝑠𝑐ℎ𝑒𝑑 value. Unlike state-of-the-
art storage I/O scheduling schemes, RackBlox considers the
network latency to help reduce the end-to-end latency.

RackBlox tracks the𝑁𝑒𝑡𝑡𝑖𝑚𝑒 with In-bandNetwork Teleme-
try in programmable switches and determines the 𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑡𝑖𝑚𝑒

using the queuing delay for each I/O request in the queue of
the storage stack. RackBlox predicts the time it will take to
return the response (𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑡𝑖𝑚𝑒 ) with a simple yet effective
sliding window algorithm that uses the average network
latency measured from the most recent incoming requests.
Coordinated Garbage Collection. Since the ToR switch
forwards each request entering the rack, it is natural to utilize
the switch to coordinate the GC events across these SSDs.

For each read request in the switch, RackBlox queries the
replica table to get the GC status and replica for the vSSD.
The destination table is queried for the GC status of the
replica. If the vSSD is not performing GC or if both the vSSD
and its replica are performing GC, we forward the packet as
is. Otherwise, we redirect the request to the replica vSSD.
Since all replicas receive the same writes, they may per-

form GC concurrently. Thus, we empower the switch to
delay a replica’s GC by configuring a relaxed soft_threshold.
Instead of having the SDF notify the switch when it must
do GC (at the hard_threshold), it requests GC once its free
block ratio falls below the earlier soft_threshold. The switch
can therefore delay GC in one replica until it reaches the
hard_threshold or until the other replica finishes GC.

RackBlox also opportunistically utilizes idle cycles to free
blocks. RackBlox predicts the idle time for a vSSD based on
the last interval between I/O requests. Once the predicted
interval exceeds a set threshold, the storage server executes
the GC and updates the GC status in the switch.
Rack-ScaleWear Leveling. To extend the lifetime of a rack
of SSDs, we propose a two-level wear leveling mechanism: a
local (intra-server) wear balancer processes the local wear
balance between SSDs in a server, and a global (inter-server)
wear balancer reduces the wear variance for SSDs in a rack.
These balancers cooperate to ensure rack-scale wear leveling.

For the local wear balancer, to obtain the uniform life-
time among SSDs in a storage server, we track the average

100/0 95/5 80/20 50/50 20/80 5/95
Read/Write Mix (%)

0
0.2
0.4
0.6
0.8

1

N
or

m
. P

99
.9

 L
at

en
cy

VDC RackBlox (Software) RackBlox

Figure 3. P99.9 read latency (excluding write-only).
erase count for an SSD and periodically swap the SSD that
has incurred the maximum wear with the SSD that has the
minimum rate of wear, following the relaxed wear leveling
approach developed in [2]. RackBlox can achieve uniform
lifetime for SSDs in a storage server by swapping once per
12 days in the worst case. Similarly, we quantify the wear
imbalance between storage servers by using the wear of a
server (average erase count of its SSDs). However, the swap-
ping cost between servers is more expensive than within a
server, due to the networking overhead. Therefore, we relax
the swapping frequency to every 8 weeks by default.
Implementation. We implement RackBlox using a Tofino
switch and programmable SSD, whose controller allows read-
/write/erase operations against raw flash resources. The
switch tables are implemented using P4. The custom packet
format is implemented with DPDK.
Evaluation. We compare RackBlox with state-of-the-art
software-defined storage architectures : (1) VDC: Virtual
datacenter [1], which enables end-to-end isolation between
flows sharing the network and storage with a multi-resource
token-bucket; (2) RackBlox (Software): We extend VDC with
software-based coordinated I/O scheduling and GC.
Our evaluation shows that: (1) RackBlox reduces the tail

latency of I/O requests by up to 5.8× for data-center applica-
tions (see Figure 3); (2) RackBlox is robust to various storage
and network scheduling policies; (3) RackBlox benefits vari-
ous SSD devices and network latency distributions; and (4)
RackBlox ensures the lifetime of an entire rack of SSDs.
References
[1] Sebastian Angel, Hitesh Ballani, Thomas Karagiannis, Greg

O’Shea, and Eno Thereska. End-to-end performance isola-
tion through virtual datacenters. In 11th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 14),
Broomfield, CO, October 2014.

[2] Jian Huang, Anirudh Badam, Laura Caulfield, Suman Nath,
Sudipta Sengupta, Bikash Sharma, and Moinuddin K. Qureshi.
Flashblox: Achieving both performance isolation and uniform
lifetime for virtualized ssds. In Proceedings of the 15th USENIX
Conference on File and Storage Technologies (FAST’17), Santa
Clara, CA, 2017.

[3] Jian Ouyang, Shiding Lin, Song Jiang, YongWang,Wei Qi, Jason
Cong, and Yuanzheng Wang. SDF: Software-Defined Flash for
Web-Scale Internet Storage Systems. In Proc. ACM ASPLOS,
Salt Lake City, UT, March 2014.

[4] Benjamin Reidys, Yuqi Xue, Daixuan Li, Bharat Sukhwani,
Wen-Mei Hwu, Deming Chen, Sameh Asaad, and Jian Huang.
Rackblox: A software-defined rack-scale storage system with
network-storage co-design. In Proceedings of the 29th Sympo-
sium on Operating Systems Principles, SOSP ’23, page 182–199.
Association for Computing Machinery, 2023.

2


	Abstract
	1 Background and Motivation
	2 Design and Implementation
	References

