
Persistent Processor Architecture
Jianping Zeng
Purdue University

Jungi Jeong
Purdue University

Changhee Jung
Purdue University

1 INTRODUCTION AND MOTIVATION
Nonvolatilememory (NVM) technologies such as ReRAM, 3DXPoint,
and STT-MRAM have emerged as alternatives to DRAM. Thanks
to their byte-addressability, low cost per bit, and in-memory persis-
tence, they are to be used as nonvolatile main memory (NVMM)—
also known as persistent memory. That is, they can transparently
replace DRAM to accommodate persistent applications with large
memory footprint and obviate the need for serializing data in a
block device to survive power failure.

However, it is not easy to make this obvious use case (i.e., trans-
parent NVMM) in reality. For example, while Intel Optane persis-
tent memory (PMEM) provides the transparent use of PMEM called
memory mode where DRAM is used as the last-level cache atop
PMEM, the Optane manual states that the PMEM works as volatile
memory in this mode. Although PMEM offers app-direct modewhere
DRAM is used as main memory and PMEM serves as persistent
heap, it pawns off the hard work of persistent programming on
users, trading the transparency for in-memory persistence. In this
partial-system persistence (PSP) model, users must rewrite their
program with crash consistency and memory persistency in mind,
and often devise application-specific recovery code tailored to the
data structures. Besides, PSP requires dedicated PMEM allocation in-
terfaces such as pmalloc, rendering already error-prone persistent
programming more complex. Importantly, the resulting persistent
program is slower than the original one due to the undo/redo log-
ging involving persistence barriers.

Given the limitations of PSP and the demand for transparent
use of PMEM without sacrificing the in-memory persistence and
crash consistency, this paper presents Persistent Processor archi-
tecture (PPA). PPA is the first of its kind to realize transparent,
lightweight, and performant whole-system persistence (WSP) [2]
without recompilation for all program embracing legacy software
whose source code is unavailable. We found that crash inconsis-
tency is caused by unpersisted stores left behind power failure and
can be corrected by replaying (persisting) them in the wake of the
power failure. Suppose the program commits 3 stores (𝑠𝑡𝑟𝐴; 𝑠𝑡𝑟𝐵;
𝑠𝑡𝑟𝐶) in a row, and due to cache replacement, the youngest 𝑠𝑡𝑟𝐶 is
persisted in PMEM before the older ones. Although this violates
the program semantics if a power outage occurs while others are
cached, it is possible to fix the inconsistency by replaying 𝑠𝑡𝑟𝐴 and
𝑠𝑡𝑟𝐵—unpersisted before the outage—when power comes back. We
can even relax this for simple hardware implementation, i.e., rather
than tracking the (un)persistence of each individual store, PPA in-
stead replays all 3 committed stores and resumes the interrupted
program following the last committed instruction on power back.

To achieve that, it is essential to preserve the registers of stores
(for replay) and other committed instructions (for resumption of the
interrupted program) across power failure. The implication is two-
fold: (1) PPA should prevent store registers from being overwritten;
this is so-called store-integrity [3]. (2) Both store registers and other
committed instruction registers must be able to survive power

outage, i.e., PPA should save the registers on the outage for the
replay and the resumption in the wake of the outage.

2 PPA OVERVIEW
Figure 1 depicts how PPA leverages ample physical registers in out-
of-order cores to preserve store registers, thus achievingWSP. In the
figure, commit rename table (CRT), register alias table (RAT), and
Free List are existing microarchitectural components. CRT keeps
the mapping from an architecture register to a physical register
for committed instructions, while RAT records that for in-flight
instructions. The free list maintains free registers for later renaming
use. PPA proposes MaskReg, a bit vector, to record which physical
register is used by prior committed stores and therefore should not
be remapped (overwritten) by the following redefinitions.
3 DYNAMIC REGION FORMATION
In contrast with prior region-level persistence [3], PPA builds re-
gions dynamically without user intervention, recompilation, and
significant performance loss. PPA leverages an existing microar-
chitectural feature to deliver the region formation with the store
integrity enforced at a low cost. In particular, PPA considers the
number of free physical registers to decide when to place a re-
gion boundary (persist barrier). Figure 1 shows that PPA places
the boundary (barrier) when no free physical register is available
at the renaming stage of the out-of-order pipeline (). Once PPA
ensures at each region boundary that the committed stores of the
finished region are all persisted, it reclaims their physical registers
with MaskReg cleared—before starting the next region, as shown
at the left bottom of the figure.
4 ASYNCHRONOUS STORE PERSISTENCE
Although prior software-logging-based PSP techniques guarantee
consistent NVM status across power failure, they incur significant
performance overhead because of a persist barrier (e.g., clwb and
sfence in x86). In contrast, PPA does not block the pipeline execu-
tion while stores are being persisted to NVM. That is, once the data
being stored is merged into the L1 data cache (⃝ in Figure 1), the L1
data cache controller immediately asynchronously writes back the
resulting dirty cacheline to NVM in the background, keeping the
pipeline busy with other instruction executions in the meantime.

To ensure all stores prior to the end of a region are already
persisted in NVM before committing following instructions, PPA
treats every region boundary (the last instruction of each region) as
a special persist barrier. Therefore, the core pipeline waits until
the acknowledgment of persisting the region’s all prior stores in
NVM is received before entering the next region. While stalling the
pipeline can lead to a slowdown due to the wasted cycle time, our
experimental results show that our hardware-based store persis-
tence has a minimal impact on the performance due to long enough
regions and thus causing negligible stalls at region boundaries.
5 STORES INTEGRITY ENFORCEMENT
Figure 1 shows how PPA ensures store integrity on the fly during
the pipeline execution. Upon retiring 𝑠𝑡𝑟 𝑟0, [100] (⃝ in the figure)

1

This paper [4] appears in MICRO’23 initially, Toronto, Canada Jianping Zeng, Jungi Jeong, and Changhee Jung

NVM
M[100] = 0
Inconsistent

Checkpoint p0/p1,
CRT, MaskReg, and
Last Committed PC
to NVM

NVM
M[100] = 1

Re-execute store
str p0, [100]

resume

Recovered

Restore p0/p1, CRT, MaskReg,
and set PC to the Last
Committed PC

PhysRegs

Asyn
ch

ronous

persi
ste

nce
,

ac
hiev

ing I
LP

rename

PhysRegs
rename

CRT

r0 p0RAT

str r0, [100] /*r0 =1*/

r0 p0

r0 p1

Power on

Persist barrier

Power failure

commit

r0 = r0 + 1;

Mask
Reg

r0 p0

r0 p0

r0 = r0 * 2
p0 p0

Last Committed
PC

rename commit

Program
start

W
rit

e 1
 à

M
[10

0]
p1Free

List p1

r0 p1

r0 p1

p0

p0 p1

r0 p1

r0 p1

p0

Time

No reclamation
of masked p0

Old NVM status New NVM status

Figure 1: PPA overview; for store integrity, 𝑝0 is not recycled even after the multiplication commits

whose 𝑟0 was renamed to 𝑝0, PPA masks 𝑝0 in MaskReg to notify
it is occupied by the store, which makes the target register of the
following multiplication instruction renamed to 𝑝1 (♢) instead of
𝑝0. Unlike conventional cores, upon retiring the multiplication (♦
𝑟0 = 𝑟0 ∗ 2) with updating CRT with 𝑟0 → 𝑝1, PPA does not
reclaim the physical register 𝑝0 which is associated with 𝑟0’s prior
definition 𝑟0 = 𝑟0 + 1—though its value can no longer be used
due to the retirement of the multiplication overwriting 𝑟0. That is
because 𝑝0 is masked as a committed store register in MaskReg,
and it should be preserved in case of power failure so that the store
can be replayed in the wake of the failure. In this way, PPA not
only guarantees store integrity in each region but also achieves
performant WSP with a much longer region size than the compiler-
based prior work [3], thus hiding the store persistence latency.

6 CHECKPOINT AND RECOVERY PROTOCOL
To achieve correct program execution across power outage, all the
store registers preserved by our register renaming trick must sur-
vive power failure. For this reason, PPA should maintain necessary
microarchitecture status such as CRT across the outage. Also, in the
wake of power failure, PPA should be able to resume the program
right after the last commit point behind the outage.

In light of this, PPA exploits just-in-time (JIT) checkpointing to
save minimal architectural states—e.g., physical register 𝑝0, CRT,
and the last committed PC as shown in Figure 1 (①)—to a designated
checkpoint storage in NVM, when power is about to be cut off.
Owing to its simplicity, PPA only requires a tiny capacitor to secure
energy for JIT checkpointing, while Narayanan’s [2] and eADR’s
demand a significantly large bulky Li-thin battery or supercapacitor.
When the power comes back, PPA first replays all committed stores
behind the failure, e.g., 𝑠𝑡𝑟 𝑝0, [100] in Figure 1 (②), and restores
other checkpointed states such as CRT (③). Then, PPA resumes
the interrupted region from the latest uncommitted instruction
following the last committed PC.

7 EVALUATION
Weuse the cycle-accurate simulator gem5 tomodel an 8-core x86_64
Skylake-X processor with two integrated memory controllers, each

astar
bzip2
gobm

k
h264ref
hm

m
er

lbm
lib

quan
m

ilc
nam

d
sjeng
gm

ean
dsjeng
lbm
leela
nab
nam

d
parest
p

erlb
xz gm

ean
cholesky
ff

t
lu-cg
lu-ncg
raytrace
w

ater-ns
w

ater-sp
gm

ean
p

c
rb sps
tatp
tp

cc
r20w

80
r50w

50
gm

ean
bayes
intruder
km

eans
labyrinth
ssca2
vacation
yada
gm

ean
lulesh
xsb

ench
gm

ean
all

gm
ean

1.0 1.0
1.2 1.2
1.4 1.4
1.6 1.6
1.8 1.8

E
xe

cu
ti

on
S

lo
w

do
w

n

CPU2006 CPU2017 SPLASH3 WHISPER STAMP Mini-apps

2.1

PPA Capri

Figure 2: Normalized slowdown of PPA to PMEM’s memory
mode; lower is better
of which manages a DRAM as an off-chip direct-mapped cache as
with PMEM’s memory mode. As shown in Figure 2, PPA incurs an
average of 2% overhead, while the state-of-the-art work Capri [1]
incurs a 26% overhead even with complicated hardware design, e.g.,
54KB battery-backed hardware buffers.

8 CONCLUSION
This paper proposes PPA, the first microarchitectural approach to
WSP. As a basis for crash consistency and lightweight WSP, PPA
realizes region-level store integrity in the out-of-order core pipeline.
Upon impending power failure, PPA checkpoints the minimal archi-
tectural states including the preserved store registers using a tiny
capacitor. When power comes back, PPA restores the checkpointed
states, replays (persists) the stores of the power-interrupted region,
and resumes the program following the latest committed instruc-
tion before the failure. Experimental results with 41 applications
highlight the benefits of PPA causing only a 2% average run-time
overhead and 0.005% chip areal cost.

REFERENCES
[1] Jungi Jeong, Jianping Zeng, and Changhee Jung. 2022. Capri: Compiler and

architecture support for whole-system persistence. In Proceedings of the 31st In-
ternational Symposium on High-Performance Parallel and Distributed Computing.
71–83.

[2] Dushyanth Narayanan and Orion Hodson. 2012. Whole-system persistence. In
Proceedings of the seventeenth international conference on Architectural Support for
Programming Languages and Operating Systems. 401–410.

[3] Jianping Zeng, Jongouk Choi, Xinwei Fu, Ajay Paddayuru Shreepathi, Dongyoon
Lee, Changwoo Min, and Changhee Jung. 2021. ReplayCache: Enabling Volatile
Cachesfor Energy Harvesting Systems. In MICRO-54: 54th Annual IEEE/ACM
International Symposium on Microarchitecture. 170–182.

[4] Jianping Zeng, Jungi Jeong, and Changhee Jung. 2023. Persistent Processor Archi-
tecture. In Proceedings of the 56th Annual IEEE/ACM International Symposium on
Microarchitecture. 1075–1091.

2

	1 Introduction and Motivation
	2 PPA Overview
	3 Dynamic Region Formation
	4 Asynchronous Store Persistence
	5 Stores Integrity Enforcement
	6 Checkpoint and Recovery Protocol
	7 Evaluation
	8 Conclusion
	References

