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1 Introduction
Communication within the datacenter needs to be fast, ef-
ficient, and secure against unauthorized access and rogue
actors. Remote procedure calls (RPCs) are one of the popular
ways of communicating between independent applications
and make up a significant portion of datacenter communi-
cation, particularly among microservices. However, RPCs
require substantial resources to service today’s datacenter
communication needs. For instance, requests spend over 25%
of their time in the RPC stack for the 95th percentile [1] at
Google. One of the significant sources of latency for RPC
frameworks is their need to serialize and compress data be-
fore transmission, which is especially resource-intensive for
dynamic data structures like trees and graphs.
The upcoming Compute Express Link (CXL) [5] based

multi-host shared memory offers an exciting alternative by
providing hardware-supported cache coherency among mul-
tiple compute nodes. Instead of serializing data structures
and transmitting them as a bitstream over the network, ap-
plications can now just share a pointer to data, significantly
lowering their CPU usage and energy needs.
However, shared access to pointer-rich data over shared

memory raises several safety concerns. First, it eliminates
the traditional isolation of the sender from the receiver in
TCP/IP-based networking. Second, applications now need to
coordinate shared memory management to avoid memory
leaks. Finally, hardware-based cache coherency networks
have limited scalability, often limited to 32 compute nodes.

To address these issues, we present RPCool, an RPC frame-
work designed for low-latency, high-throughput communi-
cation in untrusted, datacenter-scale environments. RPCool
supports native pointers, avoids the security risks of commu-
nicating between distrusting entities, scales beyond a single
rack, and enables applications to manage shared resources
efficiently.

However, to implement RPCool, we must solve major chal-
lenges associated with shared memory communication. For
example, enabling concurrent access to data structures by the
sender and the receiver poses several security risks. If raw
memory is shared, the sender could modify data structures
while the receiver processes them, resulting in data races
and leaving the receiver vulnerable. Moreover, a malicious
actor could share pointers to the receiver’s private memory,
potentially leaking sensitive data, corrupting the receiver’s
memory state, or crashing it entirely.

Another major challenge with CXL-based shared memory
RPC is that they are limited to rack scales [4], also shown
in Fig. 1(a). Thus, in a traditional datacenter environment
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Figure 1. (a) Expected scale of CXL 3.0. (b) Working of
RPCool’s shared memory communication.

where two communicating applications might be situated
on different compute nodes—for instance, to meet specific
hardware needs, the application must dynamically switch
RPC protocol, adding significant development overhead.

Finally, using shared memory for communication results
in challenges with availability and memory management.
Take, for instance, situations in which an application shar-
ing a region of shared memory crashes but does not relin-
quish the memory for others to use. In this case, a dilemma
emerges: should the orchestrator release the region on the
application’s behalf? Or should it be saved for recovery?
To solve these issues, we propose RPCool, a secure and

efficient RPC framework over CXL-based shared memory
that seamlessly falls back to RDMA for intra-datacenter com-
munication. Using RPCool, applications make RPCs with
pointer-rich data structures as their arguments directly over
the CXL-based shared memory. The receiver can optionally
ask the sender to give up access rights to the corresponding
memory region to avoid data races. Once the receiver is no-
tified of an incoming RPC, it can process RPC arguments in
a lightweight sandbox to prevent pointers from escaping the
shared memory if the sender is distrusted. Finally, to prevent
memory leaks when applications crash and to restrict servers
and clients from retaining access to the heap indefinitely,
potentially starving other processes, RPCool implements
quotas for shared memory accessible to an application and
leases for each heap.

2 Overview
RPCool provides a fast, efficient, and secure RPC mecha-
nism for applications to communicate while sharing pointer-
rich data structures. When available (Fig. 1a), RPCool uses
CXL-based shared memory to communicate, relying on the
hardware cache coherence. However, if one of the RPC partic-
ipants is accessible only over RDMA, RPCool automatically
and seamlessly switches to software-based coherence.
Applications in RPCool communicate over channels that

an RPC server creates and clients connect to (Fig. 1b). Each
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channel has a unique name and can support multiple client
connections. Clients can allocate their data structures in a
connection-only heap that is not shared among clients or a
channel-wide shared heap.
Next, we will discuss different features supported by RP-

Cool.
Support for Native Pointers As RPCool supports native

pointers, these pointers need to work across different pro-
cesses. To facilitate this, RPCool maps each connection to the
same address across all processes that access it. Furthermore,
RPCool reserves a 32 TiB region when an application starts
and assigns a globally unique address to each connection to
prevent conflicts.

Preventing Data Races across Server and Client To
prevent the RPC sender from modifying shared data struc-
tures while processing an RPC request, the receiver can re-
quire the sender to relinquish write access to the shared
heap. RPCool facilitates this by supporting a seal() system
call that revokes write access for the sender until the RPC
returns and also generates an identifier for the receiver to
verify the region is sealed. Upon completion of the RPC call,
the receiver can call a corresponding release() system call
to lift the seal on the heap.

Securely Processing Shared Data Structures To miti-
gate the risk where the sender maliciously or otherwise
crafts data structures with wild or invalid pointers, RPCool
implements a lightweight sandbox based on Intel Memory
Protection Keys (MPK) [2]. When the receiver activates the
sandbox to process the received data, e.g., traversing a tree,
the sandbox disables read/write access to all the private mem-
ory and automatically creates readable copies of variables
explicitly allowed by the programmer. Thus effectively pre-
venting any unauthorized access to private memory using
malformed pointers.

Managing SharedMemory RPCool must ensure that ap-
plications release shared memory heaps to the orchestrator
when no longer in use and avoid memory leaks if one or
more participants of an RPC channel crash. To support this,
RPCool assigns a user-defined quota to each application,
specifying the maximum number of heaps they can access
concurrently. If the application exceeds its quota (e.g., be-
cause of unreleased heaps with no clients), it will be unable
to connect to or serve on new channels until it releases suffi-
cient number of existing heaps. Moreover, the orchestrator
maintains leases for each heap on the shared memory to no-
tify participants of an RPC channel’s failed nodes. The server
and the client periodically renew these leases; if an applica-
tion crashes, the orchestrator can notify other participants
about the failure.

Seamless Fallback to RDMA To enable datacenter-scale
communication despite the limited scalability of CXL-based
shared memory, RPCool provides an automatic fallback to
the RDMA network if a client connects to a server that is
available only over RDMA. RPCool achieves this by auto-
matically deep-copying the arguments of an RPC call when
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Figure 2. RPCool performance comparison.
communicating over RDMA. This, however, results in a mis-
matched programming interface by being pass-by-reference
RPC over CXL and pass-by-value RPC over RDMA. Thus, to
provide a unified interface and reduce programming effort,
RPCool assumes that only one writer will modify the RPC
argument at a time and requires the applications to follow
the single-writer rule.

3 Results
To evaluate RPCool, we modified Memcached and Death-
StarBench’s [3] SocialNetwork benchmark and measured
their performance (Fig. 2). Across the workloads, we see that
RPCool significantly outperforms unix domain sockets and
ThriftRPC, thus showing the usefulness of RPCool.

4 Conclusion
In this extended abstract, we presented RPCool, a fast, ef-
ficient, scalable, and secure RPC framework for the age of
rack-scale coherent shared memory. RPCool solves the sig-
nificant problems associated with using shared memory for
making remote procedure calls by providing support for
native pointer-rich data structures, shared memory heap
sealing, processing shared data in a low-overhead sandbox,
and automatic RDMA fallback. Overall, RPCool outperforms
traditional RPC and shared memory techniques.
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