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1 Introduction
As computation workloads become increasingly memory
intensive, non-volatile main memories (NVMs) have become
more dense in order to increase capacity, issue improved
bandwidth and provide lower latency. However, a conse-
quence of increased device density is that volatile and non-
volatile storage devices are increasingly susceptible to phys-
ical vulnerabilities and attacks like Rowhammer, RowPress,
and RAS Clobber [2, 4, 6]. These vulnerabilities, coupled with
the increasing move towards cloud computations means that
securing NVMs is a critical problem.
The secure memory protocol keeps data in an encrypted

state by implementing counter-mode encryption [8], where
each data has a hashed message authentication code (HMAC)
and temporally and spatially unique encryption counter in
memory. To protect against replay attacks, these encryption
counters are then protected by an “integrity tree,” or a tree of
hashes such that all inner nodes of the tree can be considered
hashes of their children (i.e., Merkle tree [5]). The root of
the Merkle tree is stored in trusted hardware on-chip, and
acts as a root of trust for all values in memory. To fetch some
data from NVM, the secure memory protocol fetches the
associated HMAC, encryption counter, and path through the
integrity tree protecting that data. Once these values are
fetched, their hashes are computed and verified to ensure
that data hasn’t been corrupted nor replayed since its last
trusted state.
To address this, modern secure memory protocols are

heavily dependent on metadata caches [1, 3]. This cache re-
sides on-chip, and holds recently accessed secure memory
metadata. The performance benefits of this are twofold: (1)
like traditional caches for application data, recently accessed
values can be fetched with lower latency than main memory,
and (2) values in the cache are trusted, so data authentica-
tions only need to go up to the first cache hit. That is, the
metadata per data required to authenticate some data is re-
duced on average relative to not having a metadata cache.
Like data caches, however, use of a volatile metadata cache
implies that writeback caching protocols provide insufficient
crash consistency. On a power loss, if there has been some
update in the cache state, then the value is stale in NVM. Pro-
viding crash consistency results in even further slow downs
in secure memory. As such, navigating the benefits of the

metadata cache while incurring its fundamental incompati-
bility with NVM is a non-trivial challenge.

In this paper, we ask the question how else may we reduce
the metadata required per data authentication? Answering
this question effectively can take two forms: (1) we achieve
this end without the use of metadata caches, and (2) we can
increase the effectiveness of metadata caches in scenarios in
which the metadata cache performs poorly. Both outcomes
potentially have implications on the underlying crash con-
sistency protocol, which we explore in this paper.
In this work, we proposing addressing the limitations of

the metadata cache for secure NVMs by Huffmaninzing the
secure memory Merkle tree. As such, more frequently ac-
cessed addresses in NVM will have shorter authentication
paths, thereby reducing the metadata required per data au-
thentication. To do so, we propose a secure memory state ma-
chine in which authentications and Huffman tree reconstruc-
tions can both occur safely in the same system. To reduce
the cost of reconstruction, we consider several approaches
to constructing the Huffmanized Merkle Tree – including
dynamic Huffman encoding [7] and a novel approximate
Huffman tree construction technique.

2 Design
We propose a secure NVM protocol in which the authentica-
tion path length through the integrity is reduced as addresses
are accessed more frequently. This is done by maintaining
access counters for each page in NVM, and constructing
a Huffman tree based on these counters. If done naïvely,
however, the amount of work to build a Huffman tree from
an 8GB NVM would take billions of memory accesses, and
would need to occur somewhat frequently in order for the
shape of the tree to reflect application behavior. Instead, we
propose implementing an adaptable Huffman tree based on
the FGK algorithm [7]. This design decision ensures that
updates are more reasonable (tens of accesses), but occur
more frequently.
Unlike traditional secure memory systems, the Huffman-

ized Merkle Tree faces unique challenges at runtime and in
preserving crash consistency by dynamically changing the
shape of the Merkle Tree. In particular, suppose an authen-
tication or crash were to occur in the middle of a Huffman
reconstruction. In this case, the hashes that make up the
root of the tree still reflect the tree state before construction.
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In the case of an authentication, this may result in a false
positive detection of corruption. In the case of a power loss,
the computed root of the restored integrity tree post reboot
is inconsistent with the stored root.
Our proposed protocol explicitly addresses each of these

concerns. At runtime, our proposed protocol conforms to a
state machine with three states: normal, Huffman, and pend-
ing. In normal state, all data can be authenticated normally
and the frequency counters are updated. Once the frequency
counters result in a need to restructure the Huffman tree,
the state machine transitions from normal to Huffman state,
in which the relevant metadata is fetched from NVM and the
new tree shape is recomputed. While in Huffman state, the
state machine blocks all authentications, and authentications
can only resume when the state machine returns to normal
state. In the event that no nodes are interchanged, the state
machine returns to normal state as the hashes through all
paths remain consistent. However, in the event of any inter-
changes, the state machine transitions from Huffman state
to pending state in which all relevant updates are sent to
memory. Only once all memory ops that adjust tree state
have returned does the state machine return from pending
state to normal state.
In order to ensure crash consistency, the Huffmanized

Merkle Tree needs to write-through all writes to NVM that
occur while the state machine is in pending state. Otherwise
the tree shape in NVM may be stale on a crash, regardless
of the state machine state. Typically, updates to NVM are
made to appear “atomic” by loading tree updates to the write-
pending queue (WPQ) and only sending those to memory
when a done bit is set. However, this is insufficient when
the number of updates may be larger than the WPQ, as may
be the case with restructuring the integrity. Instead, the
Huffmanized Merkle Tree needs to perform undo logging
in NVM (where the prior pointer and address are saved to
NVM). Then, the done bit is only set when transitioning
from pending state back to normal state. At recovery time,
the status of the done bit is checked, and the tree shape is
returned to the state as defined by the undo log if the done bit
is not set. Even without a metadata cache, the Huffmanized
Merkle Tree needs to perform undo logging when updating
the tree state to ensure crash consistency in the event of a
power loss during a tree restructuring operation.

3 Evaluation and Conclusion
We implement and evaluate the Huffmanized Merkle Tree in
gem5, a cycle accurate architecture simulator. We then mea-
sure its performance against the graph500 benchmark, which
performs breadth-first search against graphs of varying sizes.
Our evaluation demonstrates performance with graphs of
125MB, 250MB, 500MB, 1GB, and 2GB. We configure an 8GB
memory to have 305ns read latency and 391ns write latency
to be consistent with Optane. Our evaluation compares the
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Figure 1. Normalized cycles to perform BFS in graph500
normalized to the baseline secure memory protocol without
a metadata cache.

baseline secure memory protocol to the Huffmanized Merkle
Tree with and without a metadata cache.

Fig. 1 shows the cycles to execute the benchmark normal-
ized to the baseline secure memory protocol without a meta-
data cache. A few things become clear from this evaluation:
(1) the efficacy of the metadata cache becomes worse as the
application demands more memory; (2) when the metadata
cache is ineffective, the Huffmanized Merkle Tree provides
performance benefits up to 45.6%; (3) without a metadata
cache, the Huffmanized Merkle Tree provides significant per-
formance benefits. In these cases, the Huffmanized Merkle
Tree reduces metadata per data by 22% on average.

In summary, Huffmanized Merkle Tree is a fundamentally
different approach for optimized secure NVMs in which per-
formance is not tightly bound to the efficacy of the metadata
cache.
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