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1 Introduction

With the rapid escalation in data generation [4] and the emer-
gence of new applications leveraging vast datasets [2], the
demand for efficient data storing and processing is growing
correspondingly. Solid State Drives (SSDs) are a popular
choice for data storage due to their superior performance.
Compared to Hard Disk Drives (HDDs), SSDs offer lower
access latency and higher data transfer bandwidth.

Although SSDs are highly regarded for their performance,
they do not always deliver stable performance. Studies in-
dicate that under certain conditions, the latency of an SSD
can be several tens of times higher than usual, often due to
internal background processes such as garbage collection and
wear leveling [5]. Additionally, the issue of tail latency is
more pronounced in all-SSD Redundant Arrays of Inexpen-
sive Disks (RAID), commonly used for enhancing reliability
and availability. In RAID configurations, since a single re-
quest may involve multiple SSDs, the overall latency of the
request is determined by the slowest SSD. Thus, any spike
in an individual SSD’s latency can significantly impact the
entire request’s performance.

To alleviate the adverse impacts of slow SSDs in an all-
SSD RAID, a straightforward approach involves redirecting
requests from busy SSDs to those that are idle. Given the
low likelihood of all SSDs simultaneously experiencing la-
tency spikes, rerouting requests from SSDs with abnormally
long latencies to those operating normally can ensure that re-
quests are processed within the required time frame. However,
implementing this mechanism presents several challenges:

Replication Overhead Redirecting a write request is rel-
atively straightforward: the system simply identifies an idle
SSD and forwards the request to it. However, redirecting a
read request is more complex. Any SSD tasked with handling
a read request must possess or be capable of reconstructing
the necessary data. Consequently, the SSD designated to re-
ceive redirected read requests must maintain some form of
data replication from the original data. One approach is to
write a duplicate of each data block on a backup SSD. While
this method is effective, it results in half of the storage space
being allocated for replication, leading to a 100% increase in

space overhead.
Block Tracking While redirecting write requests is straight-

forward, managing future read requests for the redirected data
blocks introduces the need for tracking their new locations.
Creating a global map that associates each block ID with an
SSD block can address this issue. However, this solution faces
two significant challenges. Firstly, the map would require
substantial DRAM space, potentially occupying hundreds of
gigabytes. This is because in a system with several tens of
SSDs, there could be tens or even hundreds of billions of
blocks to track. Secondly, the map could impair the perfor-
mance of standard operations. Since SSDs permit concurrent
request submissions from multiple CPU cores, the global map
must also support concurrent updates. As map access is in the
critical path of each request’s processing, employing either a
locking mechanism or developing a lock-free concurrent map
could adversely affect the latency of all ordinary operations.

CPU Centric In current systems, CPUs exclusively handle
all request scheduling tasks. This CPU-centric approach to
scheduling is problematic for three reasons. Firstly, schedul-
ing activities, such as monitoring and redirecting, can disrupt
the CPUs’ processing of regular tasks. Secondly, as SSDs’
internal states are not transparent to CPUs, redirection hap-
pens too late for effective intervention: by the time a CPU
detects an SSD’s high latency and decides to reroute tasks to
alternate SSDs, some requests have already been adversely
affected by the overburdened SSD. Additionally, there is a
delay before the CPU resumes sending requests to an SSD
that was previously busy, leading to periods of underutiliza-
tion. Finally, when new SSDs are added to the system, the
computation power of CPUs cannot scale with the number
of SSDs. This results in an increased scheduling burden on
CPUs.

Redirection Performance When an SSD becomes busy,
there are often already pending requests in the submission
queue, leading to delays. In such cases, efficient redirection is
crucial. If the CPU handles the redirection, it cannot remove
requests from the submission queue, and thus, can only send
duplicate requests to a backup SSD, which inefficiently con-
sumes bandwidth. Alternatively, if the SSD itself forwards
the request, it must utilize peer-to-peer direct memory ac-
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cess (DMA). Each DMA operation requires initialization and
setup, and it relies on interrupts to notify other devices, which
introduces additional overhead.

To address these challenges, we proposed AutoSSD, a CXL-
based, autonomic and collaborative SSD-centric scheduling
system to reduce all-SSD RAID’s tail latency. It has the fol-
lowing features:

CXL-based, Autonomic and Collaborative SSD-Centric
Scheduling The forthcoming Compute Express Link (CXL)
3.0 protocol [1] facilitates memory sharing and coherent ac-
cess between SSDs and CPUs. This enables AutoSSD to
utilize shared data structures for effective CPU-SSD com-
munication and collaboration. A lock-free queue serves as
the submission queue, allowing CPUs to enqueue requests
without notifying SSDs, while SSDs can continuously poll
and process these requests. When an SSD becomes busy, it
can cease polling from the queue and set a flag to signal
CPUs and other SSDs to halt further enqueuing and redirect
requests to backup SSDs where feasible. Concurrently, it can
reroute existing requests in the queue to backup SSDs’ queues,
provided these backups are still in normal status. This SSD-
centric scheduling approach, empowered by CXL, enables
CPUs and SSDs to coordinate workload scheduling based on
the real-time internal states of SSDs, thereby avoiding inter-
ference with regular operations and offering computational
power that can scale with the number of SSDs. Moreover, the
high-performance, lock-free data structures enabled by CXL’s
cache coherence significantly expedite redirection operations.

Using RAID Rebuild for Read Redirection AutoSSD aims
to minimize the tail latency in RAID systems, which inher-
ently possess data replication mechanisms for reconstruction.
Our focus is on RAID-5 configurations. AutoSSD leverages
existing parity blocks for read request redirection, eliminating
the need for additional replication. In scenarios where the
original SSD, designated to handle a read request, is busy, the
SSD issues supplementary read requests to all SSDs holding
the necessary data blocks for data reconstruction and then
rebuild the data. This strategy effectively reduces space re-
quirements for data replication and avoids imposing extra
overhead on write operations.

Static + Dynamic Block Mapping AutoSSD implements
a hybrid static and dynamic block mapping strategy to ef-
fectively address the block tracking challenge. Upon system
initialization, a method for calculating each block’s location
on SSDs is established. For each RAID stripe, N locations
(where N is less than or equal to the number of chunks in a
stripe) are predetermined on different SSDs for write request
redirection, as part of the static mapping process. This elimi-
nates the need for a global map. In routine operations, the lo-
cation of a block can be effortlessly calculated. For redirected
write requests, the busy SSD employs the same method to
identify a backup location, which it then records dynamically
in a local set. This ensures that subsequent read requests can
accurately locate the data. The combined static and dynamic
mapping approach significantly reduces the DRAM space
required for tracking block locations and does not adversely
impact the performance of standard operations.

Figure 1: CDF of ioping benchmark running random write
(left) and random read/write (right) on Linux RAID and Au-
toSSD

2 Results

To evaluate AutoSSD, we run ioping [3] on Linux mdraid
and AutoSSD withour emulated system and measured their
performance as shown in Figure 1. Across the workloads, we
see that AutoSSD significantly outperforms Linux mdraid.

3 Conclusion

In this extended abstract, we introduce AutoSSD, a CXL-
based, autonomic, and collaborative SSD-centric scheduling
system designed to reduce the tail latency in all-SSD RAID
configurations. AutoSSD effectively addresses key challenges
associated with redirecting requests to backup SSDs, such
as replication overhead, block tracking, CPU-centric issues,
and redirection performance. Overall, AutoSSD demonstrates
superior performance compared to traditional Linux mdraid.
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