
Memory-Awareness: Boosting NVM Energy Efficiency and
Endurance

Saeed Kargar
University of California, Santa Cruz

skargar@ucsc.edu

Faisal Nawab
University of California, Irvine

nawabf@uci.edu

ABSTRACT
Non-volatile memory (NVM) technologies find extensive
use in data storage solutions and battery-powered mobile
and IoT devices. Within this domain, wear-out and energy
efficiency pose critical challenges for NVM utilization. This
paper delves into exploring these challenges, detailing why
previous methodologies have fallen short in attaining optimal
efficiency when addressing NVM limitations. To overcome
these hurdles, we introduce a software-level memory-aware
solution, Hamming-Tree, designed to strategically select the
memory segment where a write operation is applied, effectively
mitigating these challenges [12]. Our proposal, Hamming-Tree,
outperforms existing state-of-the-art solutions significantly. This
innovative approach is adaptable to various indexing data
structures, including trees and linked lists. Moreover, it not only
complements existing indexing methods but can also synergize
with preceding hardware-based solutions to further enhance
efficiency. Real-world evaluations conducted on an Optane
memory device demonstrate that our proposed solution achieves
a reduction of up to 67.8% in energy consumption.
1 INTRODUCTION
NVM technologies suffer from two main challenges that needs to
be taken into consideration: (1) NVM write operations demand
a significant amount of current and power. For flipping an
individual bit in PCM, for instance, it requires around 50 pJ/b.
This is significant when compared to writing a whole DRAMpage
which needs only 1 pJ/b [9, 11]. (2) NVM has low write endurance
(the number of writes that can be applied to a segment of storage
media before it becomes unreliable.) NVM write endurance is
on the order of 108–109 writes, which is significantly lower than
DRAM write endurance which is on the order of 1015 writes [9].

To overcome the energy consumption and write endurance
problems in NVM, two approaches were developed. The
first approach develops hardware-based write optimization
techniques [3] that are mostly based on a Read-Before-
Write (RBW) pattern. In RBW, a write operation𝑤 to a memory
location 𝑥 is always preceded with a read of 𝑥 . The value to be
written by𝑤 is compared with the old content of 𝑥 , and only the
bits that are different are written. This reduces the number of
flipped bits, which reduces energy consumption and increases
write endurance.

The second approach tackles the problem of energy
consumption and write endurance by minimizing write
amplification [2, 6, 14, 15]. However, these methods conflate
the problem of write endurance with the problem of write
amplification. Although in many cases a technique that leads
to reducing write amplification has the side-effect of increasing
energy efficiency and write endurance, this is not always the
case as shown by prior work [8, 9]. As shown in [7, 9, 12],
designing to reduce bit flipping can significantly increase energy
efficiency and write endurance beyond what existing systems—
that consider write amplification only—achieve [10, 12].

2 METHODOLOGY
Motivation. In this work, we identify a crucial opportunity
to increase energy efficiency and write endurance that prior

0000 0000 0001 1000 0000 0001 0000

1000 0001

0000

1100 1000 0001

0000 0101

1100 1000 0001 01111001 1111

1 2 3

4

Figure 1: An example of how Hamming Tree is formed.

solutions overlooked—memory-awareness. Prior methods pick
the memory location for a write operation arbitrarily (new data
items select an arbitrary location in memory, and updates to data
items overwrite the previously-chosen location.) This misses
the opportunity to judiciously pick a memory location that is
similar to the value to be written (in terms of their hamming
distance), which can reduce the number of updated bits. Reducing
the number of bit flips increases write endurance and reduces
power consumption in many NVM technologies [5, 8].

Hamming-Tree. We present a software-level memory-aware
solution, Hamming-Tree. Hamming-Tree is implemented in
software and does not suffer from the compute and space
constraints of solutions implemented in the memory controller.
Hamming-Tree is implemented as a data structure that achieves
this objective by organizing free memory locations based on
their hamming distance. Unlike a regular system, where updates
are applied in place and there exists only one option to write
the data, our proposed method determines the best existing free
memory location in terms of hamming distance to minimize the
number of bit flips. The intuition behind our proposed memory-
aware-based method is that by placing the write operation in
the right memory location that minimizes the hamming distance
between the old and the new data, the number of bit flips can be
significantly reduced.

Hamming-Tree uses an underlying indexing structure such as
B-Tree or RB-Tree, to map available (free) memory locations of
NVM. The only difference betweenHamming-Tree and other tree-
based indexing data structures is the way it compares the items
and orders them; Hamming-Tree orders free memory locations
according to their hamming distance. For example, in a regular B-
Tree, number 1 is ordered before number 8 because 1 is less than 8.
However, in Hamming-Tree the two numbers are compared and
ordered based on the density of 0 and 1 (0/1) bits. Specifically, the
intuition behind Hamming-Tree is to map memory locations that
have the same density of 0/1 bits in different segments together.
With this mapping, Hamming-Tree enables a new write to find
a memory location that matches its density of 0/1 bits, which
means that the selected memory location’s bit-wise content is
similar to the new write content. This leads to reducing bit flips
as the new write is applied to a memory location with similar
content.

Hamming-Distance-Based Comparison Function. The
core idea of our proposed method is the Hamming-Distance-
Based Comparison Function, which is a way of comparing and
ordering blocks of string of bits (memory blocks) based on
the distribution of 1’s to 0’s. The comparison function works



Figure 2: Block diagram of the proposed method.

as follows: The comparison of two items d1 and d2 starts by
measuring the density of 1’s to 0’s between the left half and
the right half of the data items. A “Diff” function returns the
difference of the number of 1 bits in the right segment to the
number of 1 bits in the left segment (a positive Diff value
represents that the number of 1’s in the right segment is higher
than the left segment, and vice versa). Diff is applied to both
d1 and d2 and they are compared. If Diff(d1) is smaller than
Diff(d2), then d2 is considered greater than d1 (this reflects that
a higher density of 1’s in the right segment translates to being
bigger). Similarly, if Diff(d1) is greater than Diff(d2), then d1 is
considered bigger than d2. If Diff(d1) and Diff(d2) are equivalent,
then we recursively measure the density difference in the half
with more 1’s. This continues until we find a segment of an
item that has a higher density compared to the corresponding
segment of the other item, and then they are ordered accordingly.
Figure 1 illustrates an example of Hamming-Tree which is built
on a B-Tree of order m=3.

Hamming-Tree’s Mapping Structure. Figure 2 provides an
example of Hamming-Tree’s mapping structure where Hamming-
Tree is in DRAM and maps the available (free) memory locations
in the NVM data zone, in which the actual data or K/V pairs
are stored. Hamming-Tree does not need to be persisted in
NVM because it can be reconstructed during recovery. When a
DELETE, PUT, or UPDATE operation is applied, Hamming-Tree
is traversed and updated accordingly to perform the operations
and find the best free memory location.

Hamming-Tree’s Padding Strategy.
In our upcoming work, we plan to address varying memory

segment sizes using a data padding strategy employing an LSTM
model to generate meaningful padded data similar to [7]. In our
envisioned system, relying on fixed memory segments of size𝑤 ,
we aim to handle cases where input data (𝑝) is smaller than the
segment size, using padding (𝑞=𝑤-𝑝 bits) to extend it accordingly.
The objective will be to align smaller inputs with similar items in
the system. It is worth noting that the padded 𝑞-sized portion will
serve for clustering purposes and won’t be stored; only the actual
𝑝-sized data will be retained. Also, utilizing a Deep Q-Learning
model for generating bit-wise meaningful padded data could
provide a dynamically adapting real-time solution for addressing
varying memory segment sizes [1].

3 RESULTS
In this paper, we use an energy profiler named Perf, which
is a part of the Intel’s RAPL interface [4, 13] and a
performance analysis tool. Perf provides the collection of energy
measurements from various components of a computer system
such as: cores, Intel’s GPUs, package (all the core and un-core
components), DRAM, total power consumption of a node, and so
on.

Figure 3 illustrates the performance of the indexing methods,
such as B+Tree [2], Path Hashing [15], FP-Tree [14], and
NoveLSM [6]), in terms of the amount of energy they consume
in two different ways: before plugging Hamming-Tree, and
after plugging Hamming-Tree. When not plugged to Hamming-
Tree, B+-Tree has the worst energy consumption because, in

0

20

40

60

Without Hamming-Tree With Hamming-Tree

To
ta

l P
ac

ka
ge

 
En

er
gy

 (J
ou

le
) NoveLSM

B+Tree
FP-Tree
Path hashing

Figure 3: The average energy consumption per memory segment
before and after augmentation by Hamming-Tree.

a regular B+-Tree, the items in leaf nodes need to be sorted,
which increases the number of movements and bit flips. After
we tested the performance of the methods, we plugged them
to Hamming-Tree and repeated the same tests. After plugging
each method to Hamming-Tree, their performance—in terms of
energy efficiency—improves by up to 91% by preventing a lot of
unnecessary bits from being flipped.

4 CONCLUSION
Using a pluggable approach, Hamming-Tree reduces write-
endurance issues by strategically directing write operations to
memory locations, minimizing bit flips. This method seamlessly
integrates DRAM-optimized data structures, like LSM-Tree and
B+-Tree, into NVM systems without compromising performance
or write-endurance. It also enhances the write endurance of
current NVM data structures.

REFERENCES
[1] M. Andalibi, M. Hajihosseini, S. Teymoori, M. Kargar, and M. Gheisarnejad.

A time-varying deep reinforcement model predictive control for dc power
converter systems. In 2021 IEEE 12th International Symposium on Power
Electronics for Distributed Generation Systems (PEDG), pages 1–6. IEEE, 2021.

[2] S. Chen and Q. Jin. Persistent b+-trees in non-volatile main memory.
Proceedings of the VLDB Endowment, 8(7):786–797, 2015.

[3] S. Cho and H. Lee. Flip-n-write: A simple deterministic technique to improve
pram write performance, energy and endurance. In Proceedings of the 42nd
Annual IEEE/ACM International Symposium on Microarchitecture, pages 347–
357, 2009.

[4] P. Guide. Intel® 64 and ia-32 architectures software developer’s manual.
Volume 3B: System programming Guide, Part, 2(11), 2011.

[5] J. Huang, Y. Hua, P. Zuo, W. Zhou, and F. Huang. An efficient wear-level
architecture using self-adaptive wear leveling. In 49th International Conference
on Parallel Processing-ICPP, pages 1–11, 2020.

[6] S. Kannan et al. Redesigning lsms for nonvolatile memory with novelsm.
In 2018 {USENIX} Annual Technical Conference ({USENIX}{ATC} 18), pages
993–1005, 2018.

[7] S. Kargar, B. Gu, S. A. Jyothi, and F. Nawab. E2-nvm: A memory-aware write
scheme to improve energy efficiency and write endurance of nvms using
variational autoencoders. Proceedings of the 26th International Conference on
Extending Database Technology (EDBT), 2023.

[8] S. Kargar, H. Litz, and F. Nawab. Predict and write: Using k-means clustering to
extend the lifetime of nvm storage. In 2021 IEEE 37th International Conference
on Data Engineering (ICDE), pages 768–779. IEEE, 2021.

[9] S. Kargar and F. Nawab. Extending the lifetime of nvm: challenges and
opportunities. Proceedings of the VLDB Endowment, 14(12):3194–3197, 2021.

[10] S. Kargar and F. Nawab. Hamming tree: The case for memory-aware bit
flipping reduction for nvm indexing. In CIDR, 2021.

[11] S. Kargar and F. Nawab. Challenges and future directions for energy, latency,
and lifetime improvements in nvms. Distributed and Parallel Databases,
41(3):163–189, 2023.

[12] S. Kargar and F. Nawab. Hamming tree: The case for energy-aware indexing
for nvms. Proceedings of the ACM on Management of Data (SIGMOD), 1(2):1–27,
2023.

[13] K. N. Khan, M. Hirki, T. Niemi, J. K. Nurminen, and Z. Ou. Rapl in action:
Experiences in using rapl for power measurements. ACM Transactions on
Modeling and Performance Evaluation of Computing Systems (TOMPECS), 3(2):1–
26, 2018.

[14] I. Oukid et al. Fptree: A hybrid scm-dram persistent and concurrent b-tree for
storage class memory. In Proceedings of the 2016 International Conference on
Management of Data, pages 371–386, 2016.

[15] P. Zuo and Y. Hua. A write-friendly hashing scheme for non-volatile memory
systems. In Proc. MSST, 2017.


	Abstract
	1 Introduction
	2 Methodology
	3 Results
	4 Conclusion
	References

