
CS-Assist: A Tool to Assist Computational Storage Device Offload
Lokesh N. Jaliminche1, Yangwook Kang2, Changho Choi2, Pankaj Mehra3, Heiner Litz1

University of California Santa Cruz1, Samsung Semiconductor Inc.2, Elephance Memory Inc.3

1 INTRODUCTION
The exponential growth of data has made data movement an obvious
target of performance and power optimization for data processing ap-
plications. This has fueled a growing interest in Computational Storage
Devices(CSDs) that can mitigate data movement overhead between host
and storage devices in modern data-intensive applications [3]. CSDs such
as Samsung’s SmartSSD enable this capability by integrating a hardware
accelerator in every device. With ongoing technological advancements
while we get faster ways of interfacing physically to CSDs (PCIe 5 and
6), better ways of interacting with it (via CXL) [5], and better software
mechanisms for programming offload [1], identifying the functions to
offload remains the principal, and ever-present technical problem every
current and future application of computational storage must address.

Existing methodologies follow an iterative implementation and evalu-
ation cycle, which is slow and cost-prohibitive. We propose a systematic
and general methodology for automated application offload analysis
to address this issue. In particular, we propose CS-Assist to determine
candidate kernels that should be offloaded to CSDs.

Recognizing the distinct nature of CSD’s hardware capabilities and
its position in system architecture, we first identify essential hardware
and kernel characteristics contributing to performance (Section 2). Then,
Section 3 provides an overall workflow to identify candidate kernels for
offloading. Section 4 shows our initial evaluation of an analytics workload
running atop PostgreSQL DB, demonstrating accurate estimations (less
than 7% prediction error) from applying our methodology.

2 KEY HW AND KERNEL CHARACTERISTICS
Performance Characteristics of Hardware Components: The com-
putational and memory (DRAM) resources of CSDs are inherently lim-
ited by factors such as physical space, cost, and power consumption.
These constraints directly influence the potential performance benefits
of offloading specific functions/kernels to these devices. The Roofline
Model [8] has traditionally been utilized to perform bound and bottle-
neck analysis of such hardware limitations. We propose an extended
roofline model (equation 1) that first accounts for computing resources
by focusing on the Peak Compute Performance (PCP) and Oper-
ational Intensity (OI) of the kernel under analysis. Unlike previous
studies that exclusively utilize floating-point operations(FLOPS) within
the Roofline Model framework, we also consider integer operations as
the FLOPS efficiency of the data center workloads is only 0.1%, rendering
it an inappropriate measure for data center computing [6].

Next, we utilize Peak DRAM (PDB), Storage(PSB), and Host to
CSD’s Interconnect Bandwidth(PIB) to account for data transfer per-
formance of the components involved in the data path of the kernel
execution. Our extended roofline model can be scaled to consider ker-
nel offloads on multiple CSDs by appropriately scaling the model input
values. Model input values can be obtained by benchmarking hardware
components with appropriate benchmarks and utilizing hardware per-
formance counters.
Est. Perf. (CSD) = min((𝑂𝐼 × PDB), (𝑂𝐼 × PSB), (𝑂𝐼 × PIB), PCP) (1)

Working Set Size (WSS) : Besides the performance characteristics of
different hardware components, CSDs have limited DRAM capacity be-
cause of memory cost and power consumption. Limited DRAM capacity
can significantly reduce the performance of offloaded kernels whether
it is used for NAND Flash caching or for holding the working set of an
offloaded computation. To account for this limitation, we utilize Working
Set Size (WSS), which is defined as the amount of data the application

kernel requires to be present in the memory(DRAM) to avoid suffering
from excessive IO overheads. Ideal WSS includes kernels with regular
data access patterns with Reuse distance and average stride distance [7]
smaller than DRAM available on the target CSD; otherwise, it can suffer
lower performance.

Analyzing whole-application WSS is challenging due to overheads
and difficulty in tracing specific kernel memory accesses. We propose an
approximation technique involving Linux Cgroups to restrict DRAM and
observe kernel execution slowdowns. These slowdowns, measured with
Linux perf utility, indicate higher WSS for the kernel. This approach is
applied to PostgresSQL, contrasting with the direct analysis used for
independent kernels (Section 4).
Kernel Dependencies : Kernel A depends on Kernel B if A uses B’s
output. Offloading decisions, like in Table 1, consider both dependencies
and WSS (Working Set Size). For example, offloading a kernel with low
WSS but dependent on a host-resident kernel with high WSS incurs
high communication costs. Ignoring these dependencies in offloading
decisions can lead to performance issues due to increased communication
overhead.
Selectivity : Defined as the input-to-output data size ratio of a kernel,
higher selectivity results in more data reduction. It’s crucial in offloading
decisions, especially when multiple kernels are candidates. Low selec-
tivity can strain IO bandwidth, while higher selectivity improves data
reduction and bandwidth efficiency.

Kernel A Kernel B Host CSD
WSS WSS System offload
High High A and B None
High Low A B
Low High A and B None
Low Low A or None B or A and B

Table 1: Offload Decisions Considering Dependency and WSS

3 CS-ASSIST WORKFLOW

Figure 1: CS-Assist: Overall Workflow

Having identified the hardware and application characteristics that affect
the performance, we next discuss our overall workflow for leveraging
them to identify candidate kernels for offloading(Figure 1).
Identifying Candidate Kernels: As shown in Figure 1, to identify
candidate kernels, we examine a set of representative benchmarks, that
stress a particular application functionality on the host system.We collect
execution stack traces of these applications via the perf utility to examine
the dynamic call graphs. Next, we perform an iterative WSS analysis on
the call graph starting from the leaf node. First, we check whether the
leaf node kernel’s WSS is < CSD’s DRAM in which case it is added to
the candidate kernel list. Then, we add its parent node to the candidate
kernels list and calculate their cumulativeWSS. This process is continued
until the cumulative WSS exceeds the DRAM size available for use. If
the WSS exceeds the DRAM size, we remove the recently added kernel



Lokesh N. Jaliminche1 , Yangwook Kang2 , Changho Choi2 , Pankaj Mehra3 , Heiner Litz1 and University of California Santa Cruz1 , Samsung Semiconductor Inc.2 , Elephance Memory Inc.3

from the candidate kernels list and continue WSS analysis on all the
remaining kernels. After WSS analysis, dependency analysis performed
to check if any candidate kernels depend on kernels with higher WSS.
If yes, we remove them from the candidate kernel list to avoid higher
communication cost. Finally, we analyze selectivity to choose the kernels
with the highest selectivity and equation 1 is used to calculate estimated
offload performance.

4 INITIAL EVALUATION
In this section, we illustrate the usage of our methodology to analyze
and identify candidate kernels of the PostgreSQL database application.
Our Target System is a CSD that utilizes FPGA as a compute unit with
4GB of DRAM, which is significantly smaller than the Host system that
has Intel Xeon Processor with up to 32 active cores being utilized with
500GBDRAM. The effectiveness of ourmethodology is determined by the
ability to identify candidate kernels for offloading and by comparing our
estimated performance with real-world implementations of candidate
kernels on the target device.

Figure 2: Dynamic Call Graph(TPCH Query 6)

Tentative Candidate Kernels WSS corresponding to
and their dependencies DRAM Capacity

ExecInterpExpr Low
SeqNext Low

ExecScan: ExecInterpExpr, SeqNext Low
ExecAgg: ExecScan Low
ExecGather: ExecAgg High

Table 2: Kernels with Dependency and WSS (TPCH: Query 6)

Figure 3: True Vs. Estimated Performance

Following our methodology discussed in section 3, we run Query 6
of the TPCH benchmark on the host system and collect a dynamic-call
execution graph (Figure 2). Then we perform iterative WSS analysis on
this dynamic call graph starting from the leaf nodes. Table 2 shows the
results of the WSS analysis; apart from ExecGather, all the other kernels
become candidates due to their lower WSS. Next, in our dependency
analysis, since none of the candidate kernels depends on ExecGather,
we proceed to the Selectivity analysis to decide whether all or subset of
kernels to offload. Considering the Dependency and WSS information
of the candidate kernels(Table 2), we can either offload both ExecAgg
and ExecScan(ExecIntrExpr, SeqNext) or only ExecScan(ExecIntrExpr,
SeqNext)(Methodology depicted in Table 1). However, offloading only
ExecScan leads to lower Selectivity, while offloading ExecAgg leads to

higher Selectivity since it performs aggregate operations on the data
fetched from SSD/Storage. So we suggest offloading both ExecAgg and
ExecScan kernels.

To estimate the performance of offloading candidate kernels (ExecAgg,
ExecScan), we use equation 1. Operational Intensity is calculated follow-
ing methodology provided by wang et. al [6]. The peak performance
of hardware components is obtained using relevant benchmarks. We
assume the peak performance for FPGAs relative to the host performance
(in line with the actual FPGA implementation of the candidate kernels)
as it is challenging to get the peak performance of FPGAs without imple-
mentation due to their reconfigurable architecture. We plan to address
this limitation in our future work. To estimate the performance for mul-
tiple CSDs, we scale the input values corresponding to the number of
CSDs. For instance, if the peak storage bandwidth of 1 CSD is 4GB/Sec,
then we scale it to 8GB/Sec for two CSDs.

Figure 3 shows our results, comparing our estimated performance
against the True performance of candidate kernels implementation on
CSDs. We utilize our estimated performance to calculate execution time
and throughput to process ≈ 1TB to 8TB data. (Note: The amount of
data is scaled with the number of CSDs). Overall we can see that our
estimated performance is sufficiently accurate(less than 7% percentage
error) and can be used to perform initial application analysis to identify
candidate kernels and make kernel offloading decisions.

5 CONCLUSION AND FUTUREWORK
We propose CS-Assist, which considers key hardware and application
characteristics to help identify kernels suitable for beneficial computa-
tional storage offload (Sections 2, 3). Our initial evaluation (Section 4)
shows sufficient performance estimation accuracy. However, we are un-
able to model the peak computing performance of FPGAs due to their
reconfigurable architecture. We plan to address this limitation in the
future. Other work in progress uses CS-Assist to identify offloadable ker-
nels from Machine Learning workloads. NAND-based Parameter serving
for large models1 and sparsity optimization [2, 9] are the principal uses
of flash storage there. In the future, in-memory processing [4] could
additionally enable power and cost-efficient offload of embeddings cal-
culation and search. We will continue to develop CS-Assist based on our
experience with identifying and evaluating offload candidates in such
use cases.

REFERENCES
[1] Anurag Acharya, Mustafa Uysal, and Joel Saltz. Active disks: Programming model,

algorithms and evaluation. ACM SIGOPS Operating Systems Review, 32(5):81–91, 1998.
[2] Keivan Alizadeh, Iman Mirzadeh, Dmitry Belenko, Karen Khatamifard, Minsik Cho,

Carlo C Del Mundo, Mohammad Rastegari, and Mehrdad Farajtabar. Llm in a flash:
Efficient large language model inference with limited memory. 2023.

[3] Antonio Barbalace and Jaeyoung Do. Computational storage: Where are we today? In
CIDR, 2021.

[4] Minsu Kim, Muqing Liu, Luke R Everson, and Chris H Kim. An embedded nand flash-
based compute-in-memory array demonstrated in a standard logic process. IEEE Journal
of Solid-State Circuits, 57(2):625–638, 2021.

[5] Sangjin Lee, Alberto Lerner, Philippe Bonnet, and Philippe Cudré-Mauroux. Database
kernels: Seamless integration of database systems and fast storage via cxl.

[6] Lei Wang, Wanling Gao, Kaiyong Yang, and Zihan Jiang. Bops, a new computation-
centric metric for datacenter computing. In Benchmarking, Measuring, and Optimizing:
Second BenchCouncil International Symposium, Bench 2019, Denver, CO, USA, November
14–16, 2019, Revised Selected Papers 2, pages 262–277. Springer, 2020.

[7] Jonathan Weinberg, Michael O McCracken, Erich Strohmaier, and Allan Snavely. Quan-
tifying locality in the memory access patterns of hpc applications. In SC’05: Proceedings
of the 2005 ACM/IEEE Conference on Supercomputing, pages 50–50. IEEE, 2005.

[8] Samuel Williams, AndrewWaterman, and David Patterson. Roofline: an insightful visual
performance model for multicore architectures. Communications of the ACM, 52(4):65–76,
2009.

[9] Weijie Zhao, Deping Xie, Ronglai Jia, Yulei Qian, Ruiquan Ding, Mingming Sun, and
Ping Li. Distributed hierarchical gpu parameter server for massive scale deep learning
ads systems. Proceedings of Machine Learning and Systems, 2:412–428, 2020.

1https://docs.cerebras.net/en/latest/wsc/cerebras-basics/cerebras-execution-modes.html

https://docs.cerebras.net/en/latest/wsc/cerebras-basics/cerebras-execution-modes.html

	1 Introduction
	2 Key HW and Kernel Characteristics
	3 CS-ASSIST Workflow
	4 Initial Evaluation
	5 Conclusion and Future Work
	References

