
Side Information-Assisted Symbolic Regression
for Data Storage

Xiangwu Zuo
CSE Dept.

Texas A&M Univ.
dkflame@tamu.edu

Anxiao (Andrew) Jiang
CSE Dept.

Texas A&M Univ.
ajiang@cse.tamu.edu

Netanel Raviv
CSE Dept.

Washington Univ. in St. Louis
netanel.raviv@wustl.edu

Paul H. Siegel
ECE Dept.

Univ. of California, San Diego
psiegel@ucsd.edu

Abstract—There are various ways to use machine learning
to improve data storage techniques. In this paper, we study
symbolic regression, a machine-learning method for recovering
the symbolic form of a function from its samples. We present
a new symbolic regression scheme that utilizes side information
for higher accuracy and speed in function recovery. The scheme
enhances latest results on symbolic regression that were based on
recurrent neural networks and genetic programming. The scheme
is tested on a new benchmark of functions for data storage.

I. INTRODUCTION

There are various approaches of using machine learning to
improve data storage techniques. This work studies symbolic
regression, a machine-learning method for recovering the
symbolic form of a function from its samples. Specifically, let
x = (x1, x2, · · · , xn) ∈ Rn be n variables. Let y = f(x) ∈ R
be a function of x. Let S = {(Xi, yi) | i = 1, 2, · · · ,m} be
m samples of the function f , where each point Xi ∈ Rn

is a sample of x, and yi = f(Xi) is the corresponding
value of y. Given such a dataset of samples S, the goal of
symbolic regression is to recover the symbolic form of the
function f (such as y = −x1 log2 x1 − (1− x1) log2(1− x1)
or y =

√
(x1 − x2)2 + (x3 − x4)2). The recovered function

should fit the samples well, and also be as simple as possible.
Symbolic regression can have numerous applications to data

storage. One application is modeling physical storage devices,
such as non-volatile flash memories, where it can provide
functional insights into evolving cell threshold voltage distri-
butions, spatial inter-cell interference effects, and page-level
bit error counts as the memory ages over read/write cycles
or loses charge with infrequent use. Symbolic regression can
bridge experimental data with theoretical models. Another
application is aiding the analysis of storage schemes, such
as modeling the performance of error-correcting codes, wear-
leveling schemes, etc. Here it can bridge simulation data with
theoretical models and provide insights for further analysis.

Symbolic regression is a challenging problem in AI. The
number of functions in the search space grows exponentially
as the lengths of the functions increase. Existing symbolic-
regression methods mainly use evolutionary algorithms or
deep learning [3]. In particular, a recent method [1] (which we
shall call DSR-GP) improves the Deep Symbolic Regression

A longer version of this paper appeared in Proc. IEEE Information Theory
Workshop (ITW), Mumbai, India, November 2022. [4]

(DSR) approach [2] and achieves state-of-the-art performance
by combining deep neural networks with genetic program-
ming. In this work, we introduce a new symbolic regression
approach that further improves DSR-GP by combining it
with side information. Broadly speaking, side information can
refer to any information that correlates with the ground-truth
function f , although in this paper, we shall focus on a narrower
type: functions that resemble all or a part of f . We show that
the new scheme, which we shall call DSR-GP-SI, can notably
improve the performance of symbolic regression.

II. SYMBOLIC REGRESSION USING SIDE INFORMATION

To represent symbolic functions, we need a set of
operators Sop, a set of variables Svar, and a set
of values for coefficients Scoeff . For example, if
Sop = {+,−,×,÷, sin, cos, log, exp}, Svar = {x1, x2}
and Scoeff = R, then sin(x1 − x2) + 1.5 exp(x1) is a valid
symbolic function. If we wish to represent all coefficients
using a placeholder “const”, we can let Scoeff = {const}.
The three sets Sop, Svar and Scoeff together form the
token library. A symbolic function can be represented
by its Polish notation, which is a depth-first traversal of
the symbols in the computation tree (where leaves are
variables or constants, and internal nodes are operators)
of the symbolic function. For example, for f(x1, x2) =
−x1

x1+x2
log x2 − sin(2x1) cosx2, its Polish notation is

“−×÷× const x1 + x1 x2 log x2 × sin × const x1 cos x2.”
Let y = f(x) be the ground-truth function we look for. Let

Gf be its computation tree. This work considers a function
fSI to be side information (SI) for f if the computation tree of
fSI , GfSI

, can be obtained from a subtree of Gf , Gsub, where
some subtrees in Gsub can be replaced by the “const” tokens.
(For discussions on how side information can be obtained in
practice, and how to extend the above SI to more general
cases, please see the full paper [4].) The similarity between f
and fSI , γ(f, fSI), can be measured as follows. Let L(f) and
L(fSI) be the number of symbols in f and fSI , respectively.
Then γ(f, fSI) ≜ L(fSI)/L(f) ∈ [0, 1].

We present a new symbolic regression (SR) scheme DSR-
GP-SI, which extends DSR [2] and DSR-GP [1] by incor-
porating side information. It searches for a function f̂ that
not only fits the samples in S well, but also is close to
the provided side-information function fSI . To define the

“fitness” of f̂ , FS,fSI
(f̂), let us first define several notations:

(1) let µy = 1
|S|

∑|S|
i=1 yi and σy =

√
1
|S|

∑|S|
i=1(yi − µy)2,

then the “normalized root-mean-square error” NRMSE(f̂) ≜
1
σy

√
1
|S|

∑|S|
i=1(f̂(Xi)− yi)2; (2) let dLev(f̂ , fSI) be the Lev-

enshtein distance between the Polish notations of f̂ and fSI ,
then the “pre-order representation distance” PORD(f̂ , fSI) ≜
dLev(f̂ ,fSI)

L(f̂)+L(fSI)
; (3) let δ > 0 be a constant param-

eter, then the “normalized distance to side-information
function” NDSIF(f̂ , fSI) ≜ 1

|S|
∑|S|

i=1
|f̂(Xi)−fSI(Xi)|
max{|fSI(Xi)|,δ} .

Then FS,fSI
(f̂) ≜ w1

1+NRMSE(f̂)
+ w2

1+PORD(f̂ ,fSI)
+

w3

1+NDSIF(f̂ ,fSI)
, where w1, w2, w3 are constant parameters.

The greater FS,fSI
(f̂) is, the better f̂ is considered to be.

Fig. 1. The Symbolic Regression Scheme DSR-GP-SI using side information.

The DSR-GP-SI scheme is illustrated in Fig. 1. It searches
for good functions in iterations, and it ends either when a
found function matches the samples in S sufficiently well, or
when it exceeds a time budget. In each iteration, the scheme
works as follows: (1) Let fSI be the given side-information
function. We use a recurrent neural network (RNN) RNNenc

to transform it to a latent vector cSI , and use cSI to initialize
the memory of another RNN RNNdec. We then use RNNdec

to generate NRNN new functions in an auto-regressive way
(by generating the symbols in the Polish notation one by
one), and select from them nRNN functions of the highest
“fitness”. Let FRNN denote those nRNN functions. (2) Let
T 0
GP = FRNN ∪ {fSI} be the initial population for the

genetic programming (GP) component. Use α generations (of
GP operations including mutation, crossover and selection)
to generate a new population T α

GP , and select from it nGP

functions of the highest “fitness”. Let FGP denote those
nGP functions. (3) Feed the functions in FRNN ∪ FGP to
a persistent maximum reward priority queue (MRPQ), which
saves the nPQ functions of the highest fitness it has seen.
Then, the nPQ functions in MRPQ (denoted by FPQ) are
used as sample functions to train the two RNNs RNNenc and
RNNdec together using supervised learning, so that they can
learn to generate new functions that are similarly good.

We evaluate the performance of DSR-GP-SI, and compare
it to DSR [2] and DSR-GP [1], which the DSR-GP-SI scheme
evolved from. We compare their performance on two existing
benchmarks: Nguyen [3] and Livermore [1]. To better evaluate
the potential of symbolic regression for data storage, we

also present a new benchmark of 20 functions (called the
DS benchmark), shown in [4]. The performance of the three
schemes for the DS benchmark is shown in Fig. 2. (Here the
side-information functions are generated randomly. For details,
see [4].) It can be seen that having side information can help
improve the recovery rate (the fraction of times of recovering
functions correctly) substantially; and generally, the more side
information (measured by similarity between the ground-truth
function and the SI function), the better. Furthermore, even
when “similarity” is small, there often still exist (short) SI
functions that can improve the recovery rate significantly.
That can be seen from those gray circles near the top of
the figure (whose recovery rates are close or equal to 1).
Similar performance improvement by side information can be
observed for the Nguyen and Livermore benchmarks [4].

Fig. 2. Performance of DSR-GP-SI (solid curve and gray circles), DSR-
GP (dashed line) and DSR (dash-dotted line) for the DS benchmark. Here
the x-axis is the “similarity” γ(f, fSI) between the ground-truth function
and side-information function, and the y-axis is the “recovery rate”, i.e., the
fraction of times a ground-truth function is correctly recovered. (Note that
“similarity” is relevant to DSR-GP-SI, but not to DSR or DSR-GP.) Each
gray circle corresponds to a particular benchmark function and a particular
SI function, where numerous experiments for DSR-GP-SI were performed
and their recovery rate was shown. (Note that different sets of experiments
may produce gray circles that overlap each other. The more overlapping,
the darker the gray color becomes.) The solid curve shows the trend of
the gray circles: for the average recovery rates corresponding to different
“similarity” values (averaged over all functions in the DS benchmark and their
experimented SI functions for each given “similarity”), the solid curve is their
polynomial regression (a generalization of linear regression) with polynomial
degree 3. The average recovery rates of DSR and DSR-GP (which use no
side information) are 0.007 and 0.027, respectively, which are shown as two
horizontal lines for easy comparison.

REFERENCES

[1] T. N. Mundhenk, M. Landajuela, R. Glatt, C. P. Santiago, D. M. Faissol,
and B. K. Petersen, “Symbolic Regression via Neural-Guided Genetic
Programming Population Seeding,” arXiv:2111.00053, 2021.

[2] B. K. Petersen, M. Landajuela, T. N. Mundhenk, C. P. Santiago, S. K.
Kim, and J. T. Kim, “Deep Symbolic Regression: Recovering Mathemat-
ical Expressions from Data via Risk-Seeking Policy Gradients,” in Proc.
International Conference on Learning Representations (ICLR), 2021.

[3] N. Q. Uy, N. X. Hoai, M. O’Neill, R. I. McKay, and E. Galvan-Lopez,
“Semantically-based Crossover in Genetic Programming: Application
to Real-valued Symbolic Regression,” in Genetic Programming and
Evolvable Machines, vol. 12, 91–119, 2011.

[4] X. Zuo, A. Jiang, N. Raviv and P. H. Siegel, “Symbolic Regression for
Data Storage with Side Information,” in Proc. IEEE ITW, 2022.

