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» Distributed systems are a
mainstay of modern big
data applications due to

high parallelization gains ...

in theory
» With new pay-to-compute
services, outsourcing work
leads to new issues:
& Straggling Workers
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Coded Computation to the Rescue

» Coded computation addresses these
issues by encoding data in a smart
way

» Shown great success in Distributed
Large Matrix Multiplication

€ Fundamental building block of
modern machine learning
algorithms

» In this work, we focus on private
Distributed Large Matrix
Multiplication as the primary
use-case

» We start by discussing previously
considered privacy models

Tauz, Dolecek (UCLA) NVMW 2024 4/32



Short Summary of Previous Privacy Models

Private
Data : A,B

Master 'j_ . Goal: l
Data Privacy ljj . AB !
. / I \4 . J

W, W, ee| Wy
Example:
Secure Matriz Multiplication
(Yu ’20)

Tauz, Dolecek (UCLA) NVMW 2024

5 /32



Short Summary of Previous Privacy Models

Data Privacy
Request Privacy

Tauz, Dolecek (UCLA)

Private
Index :i € [l],j € [k]

T
e

W, W, ee| Wy

'\T/

Worker Data
{Ah A27 o ,Al}

{B1,B,,...,B:}

Example:

Fully Private Matrix Multiplication

(Kim ’19)

NVMW 2024

5 /32



Short Summary of Previous Privacy Models

Private
Data : A, Index : j € [k]

frm =
Master D‘jj . Goal: I

= 1
Data Privacy /’ T \ . aB, !
v o\ tmms e J

Request Privacy K 4
Data + Request Wi Wo |eo|l W

Privacy N/
Worker Data
{B1,Bs,..., By}
Example:
Secure and Private Matriz
Multiplication
(Zhu '22)

Tauz, Dolecek (UCLA) NVMW 2024 5/32




Short Summary of Previous Privacy Models

Data Privacy
Request Privacy
Data + Request

Privacy

New Privacy Model:

Batch Size

Privacy

Private

Data : A, Index : j € [k]

Master Dljj
e

W, W.

Tauz, Dolecek

(UCLA)

'\‘x/

Worker Data

[ {B1,Bs,...,By}

|

Example:
Secure and Private Matriz
Multiplication
(Zhu '22)

NVMW 2024

5 /32



New Privacy Model: Batch Size Privacy (BSP)

» The master wants to hide the
number of
requests/batches it wishes
to compute

Tauz, Dolecek (UCLA)

NVMW 2024

6/32



New Privacy Model: Batch Size Privacy (BSP)

» The master wants to hide the
number of
requests/batches it wishes
to compute

» Example:

Tauz, Dolecek (UCLA)

Private

Index : S C [l] x [k]

Master D‘j‘j—' |

Goal: 1

W, W, oo Wy

Worker Data

{A1,As, .. Ay}
{B1,By,..., By}

NVMW 2024 6 /32



New Privacy Model: Batch Size Privacy (BSP)

» The master wants to hide the
number of
requests/batches it wishes
to compute

» Example:

@ Consider a system where

workers store two libraries
{Al,AQ} and {Bl}

Tauz, Dolecek (UCLA)

Private

Index : S C [l] x [k]

Master D‘j"j— |

Goal: 1

W, W, oo Wy

Worker Data

{A1,As, .. Ay}
{B1,Ba,..., By}

NVMW 2024 6 /32



New Privacy Model: Batch Size Privacy (BSP)

» The master wants to hide the
number of
requests/batches it wishes
to compute

» Example:

@ Consider a system where
workers store two libraries
{A],AQ} and {Bl}

@ The user can request any
group of matrix products
c.g. {AlBl},{AQBl}, and
{A1B1,AsB;}

Tauz, Dolecek (UCLA)

Private

Index : S C [l] x [k]

Master D‘j‘j—

! Goal: 1

W, oo

Worker Data

{A1,As, .. Ay}
{B1,Ba,..., By}

NVMW 2024 6 /32



New Privacy Model: Batch Size Privacy (BSP)

» The master wants to hide the
number of
requests/batches it wishes
to compute

» Example:

@ Consider a system where
workers store two libraries
{Al,AQ} and {Bl}

@ The user can request any
group of matrix products
c.g. {AlBl},{AQBl}, and
{A1B1,AsB;}

@ If workers knew the batch
size is 1, they reduce the
space of possibilities

Tauz, Dolecek (UCLA)

Private

Index : S C [l] x [k]

Master D‘j‘j—

! Goal: 1

W, oo

Worker Data

{A1,As, .. Ay}
{B1,Ba,..., By}

NVMW 2024 6 /32



New Privacy Model: Batch Size Privacy (BSP)

» The master wants to hide the

number of Private
. . Index : S C [l] x [k]
requests/batches it wishes = -
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to compute 4= :
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@ Consider a system where A/ - \‘
workers store two libraries A W2 |ee| Wy
{Al,AQ} and {Bl}

@ The user can request any
group of matrix products
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New Privacy Model: Batch Size Privacy (BSP)

» The master wants to hide the '
number of Private
Index : S C [I] x [k]

requests/batches it wishes e m
M
to compute aster U‘j'——l_ I Goal: |

» Example: / I HAB; : (i) € S}i
@ Consider a system where = - -
workers store two libraries W, W, [ee] Wy
{Al,AQ} and {Bl}

@ The user can request any
group of matrix products
c.g. {AlBl},{AQBl}, and
{A1B1,AsB;}

@ If workers knew the batch
size is 1, they reduce the
space of possibilities

@ If workers knew the batch
size is 2, they know the I
exact request limits

» Can even be problematic to
systems without batch size
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Practical Applications for Batch Size Privacy

Motivating Examples

» Identifying Entities in the @
System =
@ Batch size can help identify the
identities of users or the use case
of the request
@ Small IOT devices would
generally request small batches —)
@ Large analytic engines would 2 5
request large batch sizes
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Demonstrative Problem of Batch Size Privacy

» In this work, we consider a demonstrative problem setting that
incorporates both request and batch size privacy

» For simplicity, we consider a scenario where workers store all the
data and, thus, no data privacy is necessary

» The user is allowed to request any number of matrix products
among the data stored at the workers

» We name this new system Fully Private Grouped Matrix
Multiplication (FPGMM)
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Fully Private Grouped Matrix Multiplication (FPGMM)

>
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Assume workers store two libraries Ajp, ) = {A; € F**% Vi € [L4]}
and B[LB] = {Bl € Fexe Vi e [LB]}

A master selects uniformly at random a non-empty set
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Goal: Calculate the matrix products Cs £ {A;B; : (i,5) € S}
with the following requirements:

Small recovery threshold R, i.e. the minimum number of worker
results needed in order for the master to decode

@® Measure of straggler resilience
Flexible computation and communication overhead

Privacy against any 7' colluding workers
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Assume workers store two libraries Ajp, ) = {A; € F**% Vi € [L4]}
and B[LB] = {Bl € Fexe Vi e [LB]}

A master selects uniformly at random a non-empty set

S C{(i,j) i €[lalje[Lal}

Goal: Calculate the matrix products Cs £ {A;B; : (i,5) € S}
with the following requirements:

Small recovery threshold R, i.e. the minimum number of worker
results needed in order for the master to decode

@® Measure of straggler resilience
Flexible computation and communication overhead
Privacy against any 7' colluding workers

@® Any group of T workers cannot learn anything about S given their
received queries, even the cardinality of S
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Model Overview
Master

Protocol :

Query: Master sends querries qpy] to each worker
Download: Workers output U; = f(Az,}, B(L,],q:) lj
Decode: Cg decoded from first R worker outputs D'j_

Privacy Requirement:
I(S;q7, AL, Bi,) =0,YT € [NL|T|<T

an
------------ Uy
« ™ Straggler v
; W, Wi
Colluding Libraries
ALa)sBiLs)
(UCLA) NVMW 2024 10/ 32
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Novelty of Problem

» In most coded computation settings, the workers are allowed to
know something about the encoding process

@ For example, in polynomial coded based schemes, it is ok for
workers to know the degree of the polynomial
» Since batch size impacts the encoding process, we need to further
limit the knowledge of the workers to ensure BSP
» A related topic is function privacy which focused on:

¢ Complex Polynomial Evaluations (Raviv ’19)
4 Simple Linear Combinations (Sun ’18)

» Our work falls between these two regimes since we focus on the
bi-linear operation of matrix multiplication and batch processing

» Additionally, in FPGMM, data can be re-used across multiple
request, unlike other works that focus on distinct data
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Novelty of Problem

» By further limiting the knowledge of the workers, many
state-of-the-art coded computation schemes are severly limited in:
# Optimizing the communication and computation costs (this paper)
@ Providing other forms of privacy such as privacy from the master
(ongoing work)
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Useful Tool: Interpolation of Rational Functions

Rational Polynomial with Fixed Poles
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Rational Polynomial with Fixed Poles

. K—-M-1
5 ) DISCTRE P
i=1 j=1 i) j=0
fl, fg, coog fN are fixed
» Can interpolate F'(z) if the number of ] ' ‘ - X, '
interpolation points is equal to the EEEEEEEEE ‘h T
number of rational and polynomial terms P A=
(Gasca ’89) O R
a0 | 5\ o[ [ 10
» Additionally, there are fast methods of EEEEENI NN NN
interpolation that are comparable to EEEEEE NN I EEEEEEE
polynomial interpolation (Olshevsky '01) [ [ [ Il |
10
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Another Tool: Cross-Subspace Alignment Codes

» Cross Subspace Alignment (CSA)
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Another Tool: Cross-Subspace Alignment Codes

» Cross Subspace Alignment (CSA)

codes are a coded computation Ve N/ N
scheme for calculating batches of
matrix products

[ subspace1 | [ 'Subspace 2|
» Utilizes rational functions in
order to encode the data and I I I I I I I I I I I I
extract the desired terms

» Allows for flexibility in

. . {;} {;} {1,2,2%...}
communication and (=fomf 0= f)=
computation costs due to its Recovery Threshold =  of Terms. s 02l Mmizing the

unique grouping capability
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Grouping Structure of CSA codes

Rational Bases Polynomial Bases
Desired Terms Garbage Terms

N

(1—=r) (1-1f2) (1— fr) {22 2%, ...}
S= {A1B17 A2B2a A3B3, A4B4}
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Group 1 :
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Group 3 :

Group 4 :

» Grouping reduces the recovery threshold at the cost of

more computation
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Grouping Structure of CSA codes

. Polynomial
| Rational Bases | Bases
4 N
| | Group 1 : A1B;
| [ Group 2 : A3B;
| | Group 3 : A3B3
_|_ BT Group 4 : A4By

» Grouping reduces the recovery threshold at the cost of
more computation

» The number of groups reveals information about the
batch size which breaks privacy
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Key Idea for Our Scheme

» Consider the following partitioning of the matrices given
parameters m and n:

Aiq
A; = D | Vi€ [La],Bj=[Bj1 - Bj,|.VieLg (1)

Aim
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Key Idea for Our Scheme

» Consider the following partitioning of the matrices given
parameters m and n:

Al
Ai=| @ |Vie[La,Bj=[Bj1 -+ Bj,|,Vje[Lp (1)
Ai,m

» If the master wants A;B;, then a sufficient condition is to get
A;Bj = {AiuBjb}acim ben]

» Hence, a sufficient condition to get Cg is to calculate
{AigBjs: (i,)) € S, (g, 8) € [m] x [n]}

» This is another instance of FPGMM but the batch size is now a
multiple of mn
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Grouping Independently of the Batch Size

» Let us re-index the submatrices as follows:

Ai = Aist 4101 mod m)+10F € [mLa
B; = BL%J+1,(j—1 mod n)+17J € [nL]
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» Let us re-index the submatrices as follows:

Ai = Aist 4101 mod m)+10F € [mLa
B; = BL%J+1,(J'—1 mod n)+17J € [nL]

» We can define a new FPGMM problem with computation list S:

S={mli—1)+qn(j—1)+s:(i.§) €S (¢.5) € [m] x [n]}
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Grouping Independently of the Batch Size

» Let us re-index the submatrices as follows:

Ai = Aist 4101 mod m)+10F € [mLa

Bj = BL%JH,(J'—l mod n)-i-l’j € [nLg]
» We can define a new FPGMM problem with computation list S:
S={m(i—1)+qn(—1)+s:(i,j) €S, (qs) € [m] x [n]}

» Fact: mn|S
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Grouping Independently of the Batch Size

» Let us re-index the submatrices as follows:

A= AL%Hl,(i—l mod m)+1 ¢ € [mL 4

Bj = BL%Hl,(J’—l mod n)-i-l’j € [nLg]
» We can define a new FPGMM problem with computation list S:
S={m(i—1)+qn(—1)+s:(i,j) €S, (qs) € [m] x [n]}

» Fact: mn|S

» Key Idea: We can group according to the partitioning
parameters and not the original batch size
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Grouping Independently of the Batch Size

» Let us re-index the submatrices as follows:

A= AL%Hl,(i—l mod m)+1 ¢ € [mL 4

Bj = BL%Hl,(J’—l mod n)-i-l’j € [nLg]
» We can define a new FPGMM problem with computation list S:
S={m(i—1)+qn(—1)+s:(i,j) €S, (qs) € [m] x [n]}

» Fact: mn|S

» Key Idea: We can group according to the partitioning
parameters and not the original batch size

» Hence, we can still achieve flexibility in overhead costs
without compromising privacy
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Our Scheme

We breakdown our scheme into 3 main stages:
Encoding
Query and Computation
Decoding
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Encoding Phase: Create Grouping

The master determines the partitioning parameters m and n and
the grouping parameter r such that r|mn
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The master groups S into r equal, non-overlapping groups of size
0= LS'# denoted by Q1,..., 9,
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Encoding Phase: Create Grouping

The master determines the partitioning parameters m and n and
the grouping parameter r such that r|mn

The master groups S into r equal, non-overlapping groups of size
0= LS'# denoted by Q1,..., 9,

For each (i,7) € S , the master associates a distinct element f; ;
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Encoding Phase: Create Encoding Functions

The master then creates the encoding functions for k € [r]:

SO RETRCo ] B S ————ye R

(g,8)€Qk:q=1 (1’ o fq,s)
] b
(‘I73)€Qk:S=] 5
(@ = [I @=fiy)
(lvj)egk; J
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Encoding Phase: Create Encoding Functions

The master then creates the encoding functions for k € [r]:

@ =w@) [ Y ) |,

(¢,5)€Qx:q=1 (l‘ - f(bs)
1
bk(w) = Z - + Zl?7k(x)
J (4:5)€Qu:5=j (z—fgs) 7
wi(w) = H (- fij)

¢ ¢ (z) and z§7k(x) are random polynomials of degree T — 1
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Encoding Phase: Create Encoding Functions

The master then creates the encoding functions for k € [r]:

1 a
aik(T) = wi(z) > @=f0) + zix(2) |
(q,S)GQkiq:i L
1

bjk(T) = Z @ o) + Z?,k(x)

(4,5)€Qu:s=j b3
we(@)= ] (@- fiy)

(’i,j)GQk )

¢ ¢ () and z;? i (x) are random polynomials of degree 7" — 1
® By Shamir’s secret sharing scheme, ensures that any 7'
evaluations of a; x(x) and b; x(z) are uniformly random variables
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Encoding Phase: Create Encoding Functions

The master then creates the encoding functions for k € [r]:

1 a
ai k(%) = wi(z) Z W‘I'Zi,k(x) ;
(g,5)€Qk:q=i be
1

bjk(z) = Z W + Z?,k@)

(¢,5)€Qx:5=j ©s
we@)= [[ (@ fij)

(l,])er )

® q, ;(z) and b; () have the following property:

i53.k

azk( ) ( ) 61,3 k( ) {(ﬁTJ) (7”.7) € Qka

0 otherwise,

where v%7'* is a non-zero constant and Bij.k(x) is a polynomial of
degree § + 2T — 2
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Query and Computation

For worker g € [IN], the master associates an element x, that is
distinet from {f;; : (i,j) € S}
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Query and Computation

For worker g € [IN], the master associates an element x, that is
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the following:

€ The partitioning parameters m and n
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Query and Computation

For worker g € [IN], the master associates an element x, that is
distinet from {f;; : (i,j) € S}

The master then constructs a query for each worker that contains
the following:

€ The partitioning parameters m and n

@ The grouping parameter r
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Query and Computation

For worker g € [IN], the master associates an element x, that is
distinet from {f;; : (i,j) € S}

The master then constructs a query for each worker that contains
the following:

€ The partitioning parameters m and n
@ The grouping parameter r

@ The encoding coefficients {{a; x(z,)} 52 }r_,, {{b;, k(xg)}”LB}k 1
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Query and Computation

For worker g € [IN], the master associates an element x, that is
distinet from {f;; : (i,j) € S}

The master then constructs a query for each worker that contains
the following:

€ The partitioning parameters m and n
@ The grouping parameter r

@ The encoding coefficients {{a; x(z,)} 52 }r_,, {{b;, k(xg)}”LB}k 1

Any T collection of these queries does not reveal anything about S
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Query and Computation

The worker then partitions the matrices and encodes them using

the encoding parameters:

mLA _ ’IlLB .
Ap =) Ajaip(ag). B =) Bjbju(zy)
i=1 J=1
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Query and Computation

The worker then partitions the matrices and encodes them using
the encoding parameters:

mLA _ ’IlLB .
Ap =) Ajaip(ag). B =) Bjbju(zy)
i=1 J=1

The worker computes and outputs:

T
S ARy
k=1

Tauz, Dolecek (UCLA) NVMW 2024 23/32



Query and Computation

The worker then partitions the matrices and encodes them using

the encoding parameters:

mLA _ ’IlLB .
Ap =) Ajaip(ag). B =) Bjbju(zy)
i=1 J=1

The worker computes and outputs:

r mLanLp

STABL=Y > Y AiBjaik(wg)bjn(zg)
k=1

k=1 =1 j=1
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Query and Computation

The worker then partitions the matrices and encodes them using
the encoding parameters:

mLA _ ’IlLB .
Ap =) Ajaip(ag). B =) Bjbju(zy)
i=1 =

The worker computes and outputs:

r mLanLp

Zxkﬁk = Z Z Z Aiﬁjai,k(xg)bj,k(xg)
k=1

k=1 i=1 j=1

mLanLp

= Z 77]7 fl’] + Z ZA B]ﬁz‘jk :Eg)

k=1 \(4,5) EQk i=1 j=1
fy »]» I,JAZB]
(5 Fi)
s @Tg— Jiy
(i.9)€S
where I(z) is a polynomial matrix of maximum degree 6 + 27" — 2
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Query and Computation

The worker then partitions the matrices and encodes them using
the encoding parameters:

mLA _ ’IlLB .
Ap =) Ajaip(ag). B =) Bjbju(zy)
i=1 =

The worker computes and outputs:

r mLanLp

Zxkﬁk = Z Z Z Aiﬁjai,k(xg)bj,k(xg)
k=1

k=1 i=1 j=1

mLanLp

r i,5,k
:Z Z T AGDy fm +ZZAB]ﬁwk$g)

k=1 \ (i,j) er i=1 j=1
r)/ JJCZJA/LB]
_ €T, — L

G f)

where I(z) is a polynomial matrix of maximum degree 6 + 27" — 2
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Decoding utilizing Rational Function Interpolation

The master now gets evaluations of the following function

Lk A B,
Z 'Yx — f ] + I( )
(i.5)eS "
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Decoding utilizing Rational Function Interpolation

The master now gets evaluations of the following function

1,9, kA B
Z 'yx — f J + I( )
(i.J)€S I

This function has |S| = |S|mn rational terms and
0+2T —1= |S|Tmn + 2T — 1 polynomial terms
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Decoding utilizing Rational Function Interpolation

The master now gets evaluations of the following function

1,9, kA B
Z 'Yx — f J + I( )
(i.J)€S I

This function has |S| = |S|mn rational terms and

0+2T —1= Wl# + 2T — 1 polynomial terms
Can be interpolated from (“) [S|mn + 2T — 1 evaluations

Tauz, Dolecek (UCLA) NVMW 2024
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Main Result

Achievability

Given parameters m, n,r such that r|mn, our scheme achieves

1
Recovery Threshold: R = (T +

) |Slmn + 2T — 1

> 1 2T —1
Normalized Download Cost: E x X =2 (T + )

S| © mn r |S|mn
. . . a’r
Normalized Computational Complexity: O | ————
|S|mn

while guaranteeing batch size privacy against any 7' colluding workers

v
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Main Result

Achievability

Given parameters m, n,r such that r|mn, our scheme achieves

1
Recovery Threshold: R = (T +

) |Slmn + 2T — 1

2 1 2T—1
Normalized Download Cost: E X > _2(r +
S| mn r |S|mn

3
Normalized Computational Complexity: O <M>

|S|mn

while guaranteeing batch size privacy against any 7' colluding workers

v
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Experimental Simulations

» The following simulations fix the partitioning such that mn = 24.

Varied |S|, T =10

=
@

Normalized Communication Cost
IS [
- @

—
ra

000 002 004 006 008 0lo
Mormalized Computational Complexity
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Experimental Simulations

» The following simulations fix the partitioning such that mn = 24.

Varied |S|. T = 10

22
- |5|=5
20 ~m- |5|=8
-m- |5|=12
18 Better Amortization

with
Larger Batch sizes

Normalized Communication Cost
=
o

=
8}

000 002 004 006 008 010

Tauz, Dolecek (UCLA)




Experimental Simulations

» The following simulations fix the partitioning such that mn = 24.

Normalized Communication Cost
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Experimental Simulations

» The following simulations fix the partitioning such that mn = 24.

2 Varied IS, T = 10 Varied T, |S| = 10
- [|5]=5 22 —& T=30
“ _ o - T=20
£ 20 - =8 3 & =10
-= [5|=12 = 20
s £
g8 Better Amortization £, Overhead due to
2 with E privacy increases
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= 14 T 14 |
E §
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12 12 4
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Outline

Privacy from the Master
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Privacy from the Master (PFM)

» Privacy from the master (PFM) is another privacy constraint
where the master cannot learn anything beyond what they
requested
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about the matrix libraries given the messages it receives,
beyond the information that Cs provides
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Privacy from the Master (PFM)

» Privacy from the master (PFM) is another privacy constraint
where the master cannot learn anything beyond what they
requested

» In the context of FPGMM, the master cannot learn anything more
about the matrix libraries given the messages it receives,
beyond the information that Cs provides

» Batch size privacy incurs significant overhead with current state of
the art techniques for PFM
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Current Approaches to Handling PFM

» Most coded computation techniques encode desired terms into
certain polynomial/rational basis functions
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Current Approaches to Handling PFM

» Most coded computation techniques encode desired terms into
certain polynomial/rational basis functions

» Thus, a natural solution to achieve PFM is adding random noise
to the basis functions that do not contain the desired terms

» Example: Generalized CSA codes with Noise Alignment (Chen
’21) achieve PFM by adding noise to the polynomial terms (and a
few rational terms)

Rational Bases Polynomial Bases
Desired Terms Garbage Terms

4 Y I
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Privacy from the Master limits solutions to FPGMM

Batch Rational Bases Polynomial Bases
Size Desired Terms Garbage Terms

4 N A

IS| =3
S| =2 T
15| =1 T O O

» To guarantee PFM, workers need to add a pessimistic amount
of noise which significantly increases the recovery threshold

¢ (UCLA)



Privacy from the Master limits solutions to FPGMM

Batch Rational Bases Polynomial Bases
Size Desired Terms Garbage Terms

4 N A

15| =3
S| =2 B e e e
151 =1 T

» We are currently researching novel techniques to address this issue
based on recent advances in coded computation
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Summary

» We initiated the first investigation into batch size privacy for
coded computation
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Summary

» We initiated the first investigation into batch size privacy for
coded computation

» Introduced the novel problem of FPGMM that highlights the
key issues of the new privacy model

» We provided an achievable scheme utilizing CSA-like codes that
guarantees privacy, offers good straggler resilience, and
provides flexible communication and computation costs

» We highlighted that batch size privacy also complicates other
privacy models such as privacy from the master and discuss
our ongoing work into the topic
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