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Modern Issues of Distributed Computing

➤ Distributed systems are a
mainstay of modern big
data applications due to
high parallelization gains

...
in theory

➤ With new pay-to-compute
services, outsourcing work
leads to new issues:

◆ Straggling Workers
◆ Privacy Concerns
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Coded Computation to the Rescue

➤ Coded computation addresses these
issues by encoding data in a smart
way

➤ Shown great success in Distributed
Large Matrix Multiplication

◆ Fundamental building block of
modern machine learning
algorithms

➤ In this work, we focus on private
Distributed Large Matrix
Multiplication as the primary
use-case

➤ We start by discussing previously
considered privacy models

Encode

Data: (A,B)

Decode

Result: AB
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Short Summary of Previous Privacy Models

1 Data Privacy

2 Request Privacy

3 Data + Request
Privacy

New Privacy Model:
Batch Size
Privacy

Master Goal:

W1 W2 WN

Private

Example:
Secure Matrix Multiplication

(Yu ’20)
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New Privacy Model: Batch Size Privacy (BSP)

➤ The master wants to hide the
number of
requests/batches it wishes
to compute

➤ Example:

◆ Consider a system where
workers store two libraries
{A1,A2} and {B1}

◆ The user can request any
group of matrix products
e.g. {A1B1},{A2B1}, and
{A1B1,A2B1}

◆ If workers knew the batch
size is 1, they reduce the
space of possibilities

◆ If workers knew the batch
size is 2, they know the
exact request

Goal:

W1 W2 WN

Worker Data

Master

Private

➤ Can even be problematic to
systems without batch size
limits
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Practical Applications for Batch Size Privacy

Motivating Examples

➤ Inferring Size of Neural
Networks

◆ Using batched coded computing,
a user can train a network using
model parallelism

◆ Batch size can help infer the size
of the network

Batch 1 Batch 2
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Practical Applications for Batch Size Privacy

Motivating Examples

➤ Identifying Entities in the
System

◆ Batch size can help identify the
identities of users or the use case
of the request

◆ Small IOT devices would
generally request small batches

◆ Large analytic engines would
request large batch sizes
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Demonstrative Problem of Batch Size Privacy

➤ In this work, we consider a demonstrative problem setting that
incorporates both request and batch size privacy

➤ For simplicity, we consider a scenario where workers store all the
data and, thus, no data privacy is necessary

➤ The user is allowed to request any number of matrix products
among the data stored at the workers

➤ We name this new system Fully Private Grouped Matrix
Multiplication (FPGMM)
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Fully Private Grouped Matrix Multiplication (FPGMM)

➤ Assume workers store two libraries A[LA] = {Ai ∈ Fα×α, ∀i ∈ [LA]}
and B[LB ] = {Bi ∈ Fα×α, ∀i ∈ [LB]}

➤ A master selects uniformly at random a non-empty set
S ⊆ {(i, j) : i ∈ [LA], j ∈ [LB]}

➤ Goal: Calculate the matrix products CS ≜ {AiBj : (i, j) ∈ S}
with the following requirements:

◆ Small recovery threshold R, i.e. the minimum number of worker
results needed in order for the master to decode

● Measure of straggler resilience

◆ Flexible computation and communication overhead

◆ Privacy against any T colluding workers

● Any group of T workers cannot learn anything about S given their
received queries, even the cardinality of S
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Model Overview

W1 W2 WN

Master

Libraries

W3

Colluding

Straggler
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Novelty of Problem

➤ In most coded computation settings, the workers are allowed to
know something about the encoding process

◆ For example, in polynomial coded based schemes, it is ok for
workers to know the degree of the polynomial

➤ Since batch size impacts the encoding process, we need to further
limit the knowledge of the workers to ensure BSP

➤ A related topic is function privacy which focused on:

◆ Complex Polynomial Evaluations (Raviv ’19)
◆ Simple Linear Combinations (Sun ’18)

➤ Our work falls between these two regimes since we focus on the
bi-linear operation of matrix multiplication and batch processing

➤ Additionally, in FPGMM, data can be re-used across multiple
request, unlike other works that focus on distinct data
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◆ Simple Linear Combinations (Sun ’18)

➤ Our work falls between these two regimes since we focus on the
bi-linear operation of matrix multiplication and batch processing

➤ Additionally, in FPGMM, data can be re-used across multiple
request, unlike other works that focus on distinct data
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➤ By further limiting the knowledge of the workers, many
state-of-the-art coded computation schemes are severly limited in:

◆ Optimizing the communication and computation costs

(this paper)

◆ Providing other forms of privacy such as privacy from the master

(ongoing work)
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1 Background and Motivation

2 Our Scheme

3 Privacy from the Master
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Useful Tool: Interpolation of Rational Functions

Rational Polynomial with Fixed Poles

F (z) =

N∑
i=1

ui∑
j=1

ei,j
(z − fi)j

+

K−M−1∑
j=0

e0,jz
j

f1, f2, . . . , fN are fixed

➤ Can interpolate F (z) if the number of
interpolation points is equal to the
number of rational and polynomial terms
(Gasca ’89)

➤ Additionally, there are fast methods of
interpolation that are comparable to
polynomial interpolation (Olshevsky ’01)
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Another Tool: Cross-Subspace Alignment Codes

➤ Cross Subspace Alignment (CSA)
codes are a coded computation
scheme for calculating batches of
matrix products

➤ Utilizes rational functions in
order to encode the data and
extract the desired terms

➤ Allows for flexibility in
communication and
computation costs due to its
unique grouping capability

Desired Terms Garbage Terms

Recovery Threshold = # of Terms Goal: Minimizing the 
# of Garbage Terms  

Subspace 1 Subspace 2
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Grouping Structure of CSA codes

Rational Bases
Desired Terms 

Polynomial Bases
Garbage Terms 
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Grouping Structure of CSA codes

Rational Bases 
Polynomial 

Bases 

Group 1

Group 2

Group 3

Group 4

➤ Grouping reduces the recovery threshold at the cost of
more computation

➤ The number of groups reveals information about the
batch size which breaks privacy
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Key Idea for Our Scheme

➤ Consider the following partitioning of the matrices given
parameters m and n:

Ai =

Ai,1
...

Ai,m

∀i ∈ [LA],Bj =
[
Bj,1 · · · Bj,n

]
,∀j ∈ [LB] (1)

➤ If the master wants AiBj , then a sufficient condition is to get
AiBj = {Ai,aBj,b}a∈[m],b∈[n]

➤ Hence, a sufficient condition to get CS is to calculate
{Ai,qBj,s : (i, j) ∈ S, (q, s) ∈ [m]× [n]}

➤ This is another instance of FPGMM but the batch size is now a
multiple of mn
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Grouping Independently of the Batch Size

➤ Let us re-index the submatrices as follows:

Ãi = A⌊ i−1
m

⌋+1,(i−1 mod m)+1, i ∈ [mLA]

B̃j = B⌊ j−1
n

⌋+1,(j−1 mod n)+1, j ∈ [nLB]

➤ We can define a new FPGMM problem with computation list S̃:

S̃ = {m(i− 1) + q, n(j − 1) + s : (i, j) ∈ S, (q, s) ∈ [m]× [n]}

➤ Fact: mn|S̃
➤ Key Idea: We can group according to the partitioning

parameters and not the original batch size

➤ Hence, we can still achieve flexibility in overhead costs
without compromising privacy
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Our Scheme

We breakdown our scheme into 3 main stages:

1 Encoding

2 Query and Computation

3 Decoding
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Encoding Phase: Create Grouping

1 The master determines the partitioning parameters m and n and
the grouping parameter r such that r|mn

2 The master groups S̃ into r equal, non-overlapping groups of size

δ = |S|mn
r denoted by Q1, . . . ,Qr

3 For each (i, j) ∈ S̃, the master associates a distinct element fi,j
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Encoding Phase: Create Encoding Functions
4 The master then creates the encoding functions for k ∈ [r]:

ai,k(x) = ωk(x)

 ∑
(q,s)∈Qk:q=i

1

(x− fq,s)
+ zai,k(x)

 ,

bj,k(x) =
∑

(q,s)∈Qk:s=j

1

(x− fq,s)
+ zbj,k(x)

ωk(x) =
∏

(i,j)∈Qk

(x− fi,j)

◆ ai,k(x) and bj,k(x) have the following property:

ai,k(x)bj,k(x) = βi,j,k(x) +

{
γi,j,k

(x−fi,j)
(i, j) ∈ Qk,

0 otherwise,

where γi,j,k is a non-zero constant and βi,j,k(x) is a polynomial of
degree δ + 2T − 2
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Query and Computation

1 For worker g ∈ [N ], the master associates an element xg that is

distinct from {fi,j : (i, j) ∈ S̃}

2 The master then constructs a query for each worker that contains
the following:

◆ The partitioning parameters m and n

◆ The grouping parameter r

◆ The encoding coefficients {{ai,k(xg)}mLA
i=1 }rk=1, {{bj,k(xg)}nLB

j=1 }rk=1

Any T collection of these queries does not reveal anything about S
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Query and Computation
3 The worker then partitions the matrices and encodes them using

the encoding parameters:

Âk =

mLA∑
i=1

Ãiai,k(xg), B̂k =

nLB∑
j=1

B̃jbj,k(xg)

4 The worker computes and outputs:

r∑
k=1

ÂkB̂k

=
r∑

k=1

mLA∑
i=1

nLB∑
j=1

ÃiB̃jai,k(xg)bj,k(xg)

=
r∑

k=1

 ∑
(i,j)∈Qk

γi,j,kÃiB̃j

(xg − fi,j)
+

mLA∑
i=1

nLB∑
j=1

ÃiB̃jβi,j,k(xg)


=

∑
(i,j)∈S̃

γi,j,ki,jÃiB̃j

(xg − fi,j)
+ I(xg)

where I(x) is a polynomial matrix of maximum degree δ + 2T − 2
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ÃiB̃jβi,j,k(xg)


=

∑
(i,j)∈S̃

γi,j,ki,jÃiB̃j
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γi,j,kÃiB̃j
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mLA∑
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nLB∑
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ÃiB̃jβi,j,k(xg)
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(xg − fi,j)
+ I(xg)
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Decoding utilizing Rational Function Interpolation

1 The master now gets evaluations of the following function

∑
(i,j)∈S̃

γi,j,kÃiB̃j

(x− fi,j)
+ I(x)

2 This function has |S̃| = |S|mn rational terms and

δ + 2T − 1 = |S|mn
r + 2T − 1 polynomial terms

3 Can be interpolated from
(
r+1
r

)
|S|mn+ 2T − 1 evaluations
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Main Result

Achievability

Given parameters m,n, r such that r|mn, our scheme achieves

Recovery Threshold: R =

(
r + 1

r

)
|S|mn+ 2T − 1

Normalized Download Cost:
R

|S|
× α2

mn
= α2

(
r + 1

r
+

2T − 1

|S|mn

)
Normalized Computational Complexity: O

(
α3r

|S|mn

)
while guaranteeing batch size privacy against any T colluding workers
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Experimental Simulations

➤ The following simulations fix the partitioning such that mn = 24.
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Experimental Simulations

➤ The following simulations fix the partitioning such that mn = 24.

Better Amortization 
with
Larger Batch sizes

Overhead due to 
privacy increases 
slowly with T
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2 Our Scheme
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Privacy from the Master (PFM)

➤ Privacy from the master (PFM) is another privacy constraint
where the master cannot learn anything beyond what they
requested

➤ In the context of FPGMM, the master cannot learn anything more
about the matrix libraries given the messages it receives,
beyond the information that CS provides

➤ Batch size privacy incurs significant overhead with current state of
the art techniques for PFM
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Current Approaches to Handling PFM

➤ Most coded computation techniques encode desired terms into
certain polynomial/rational basis functions

➤ Thus, a natural solution to achieve PFM is adding random noise
to the basis functions that do not contain the desired terms

➤ Example: Generalized CSA codes with Noise Alignment (Chen
’21) achieve PFM by adding noise to the polynomial terms (and a
few rational terms)

Rational Bases
Desired Terms 

Polynomial Bases
Garbage Terms 

Noise
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Privacy from the Master limits solutions to FPGMM

Rational Bases
Desired Terms 

Polynomial Bases
Garbage Terms 

Batch 
Size

Noise

➤ To guarantee PFM, workers need to add a pessimistic amount
of noise which significantly increases the recovery threshold
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Privacy from the Master limits solutions to FPGMM

Rational Bases
Desired Terms 

Polynomial Bases
Garbage Terms 

Batch 
Size

Noise

➤ We are currently researching novel techniques to address this issue
based on recent advances in coded computation
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Summary

➤ We initiated the first investigation into batch size privacy for
coded computation

➤ Introduced the novel problem of FPGMM that highlights the
key issues of the new privacy model

➤ We provided an achievable scheme utilizing CSA-like codes that
guarantees privacy, offers good straggler resilience, and
provides flexible communication and computation costs

➤ We highlighted that batch size privacy also complicates other
privacy models such as privacy from the master and discuss
our ongoing work into the topic
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