Fully Private Grouped Matrix Multiplication with Colluding Workers

Lev Tauz and Lara Dolecek

Electrical and Computer Engineering, University of California, Los Angeles, USA

15th Annual Non-Volatile Memories Workshop 2024

Outline

1 Background and Motivation

2 Our Scheme

3 Privacy from the Master

Modern Issues of Distributed Computing

> Distributed systems are a mainstay of modern big data applications due to high parallelization gains

Modern Issues of Distributed Computing

> Distributed systems are a mainstay of modern big data applications due to high parallelization gains ... in theory

Modern Issues of Distributed Computing

> Distributed systems are a mainstay of modern big data applications due to high parallelization gains ... in theory
> With new pay-to-compute services, outsourcing work leads to new issues:

Modern Issues of Distributed Computing

> Distributed systems are a mainstay of modern big data applications due to high parallelization gains ... in theory
> With new pay-to-compute services, outsourcing work leads to new issues:

- Straggling Workers

Modern Issues of Distributed Computing

> Distributed systems are a mainstay of modern big data applications due to high parallelization gains ... in theory
> With new pay-to-compute services, outsourcing work leads to new issues:

- Straggling Workers
- Privacy Concerns

Coded Computation to the Rescue

$>$ Coded computation addresses these issues by encoding data in a smart way

Coded Computation to the Rescue

$>$ Coded computation addresses these issues by encoding data in a smart way
> Shown great success in Distributed Large Matrix Multiplication

Coded Computation to the Rescue

$>$ Coded computation addresses these issues by encoding data in a smart way
> Shown great success in Distributed Large Matrix Multiplication

- Fundamental building block of modern machine learning algorithms

Coded Computation to the Rescue

$>$ Coded computation addresses these issues by encoding data in a smart way
> Shown great success in Distributed Large Matrix Multiplication

- Fundamental building block of modern machine learning algorithms
> In this work, we focus on private Distributed Large Matrix Multiplication as the primary use-case

Coded Computation to the Rescue

$>$ Coded computation addresses these issues by encoding data in a smart way
> Shown great success in Distributed Large Matrix Multiplication

- Fundamental building block of modern machine learning algorithms
> In this work, we focus on private Distributed Large Matrix Multiplication as the primary use-case
> We start by discussing previously
 considered privacy models

Short Summary of Previous Privacy Models

Example:
Secure Matrix Multiplication
(Yu '20)

Short Summary of Previous Privacy Models

1 Data Privacy
2 Request Privacy

Fully Private Matrix Multiplication (Kim '19)

Short Summary of Previous Privacy Models

1 Data Privacy
2 Request Privacy
3 Data + Request Privacy

Short Summary of Previous Privacy Models

1 Data Privacy
2 Request Privacy
3 Data + Request Privacy

New Privacy Model:

Batch Size Privacy

New Privacy Model: Batch Size Privacy (BSP)

> The master wants to hide the number of requests/batches it wishes to compute

New Privacy Model: Batch Size Privacy (BSP)

> The master wants to hide the number of requests/batches it wishes to compute
> Example:

New Privacy Model: Batch Size Privacy (BSP)

> The master wants to hide the number of requests/batches it wishes to compute
> Example:

- Consider a system where workers store two libraries $\left\{\mathbf{A}_{1}, \mathbf{A}_{2}\right\}$ and $\left\{\mathbf{B}_{1}\right\}$

New Privacy Model: Batch Size Privacy (BSP)

> The master wants to hide the number of requests/batches it wishes to compute
> Example:

- Consider a system where workers store two libraries $\left\{\mathbf{A}_{1}, \mathbf{A}_{2}\right\}$ and $\left\{\mathbf{B}_{1}\right\}$
- The user can request any group of matrix products e.g. $\left\{\mathbf{A}_{1} \mathbf{B}_{1}\right\},\left\{\mathbf{A}_{2} \mathbf{B}_{1}\right\}$, and $\left\{\mathbf{A}_{1} \mathbf{B}_{1}, \mathbf{A}_{2} \mathbf{B}_{1}\right\}$

New Privacy Model: Batch Size Privacy (BSP)

> The master wants to hide the number of requests/batches it wishes to compute

- Example:
- Consider a system where workers store two libraries $\left\{\mathbf{A}_{1}, \mathbf{A}_{2}\right\}$ and $\left\{\mathbf{B}_{1}\right\}$
- The user can request any group of matrix products e.g. $\left\{\mathbf{A}_{1} \mathbf{B}_{1}\right\},\left\{\mathbf{A}_{2} \mathbf{B}_{1}\right\}$, and $\left\{\mathbf{A}_{1} \mathbf{B}_{1}, \mathbf{A}_{2} \mathbf{B}_{1}\right\}$
- If workers knew the batch size is 1 , they reduce the space of possibilities

New Privacy Model: Batch Size Privacy (BSP)

> The master wants to hide the number of requests/batches it wishes to compute

- Example:
- Consider a system where workers store two libraries $\left\{\mathbf{A}_{1}, \mathbf{A}_{2}\right\}$ and $\left\{\mathbf{B}_{1}\right\}$
- The user can request any group of matrix products e.g. $\left\{\mathbf{A}_{1} \mathbf{B}_{1}\right\},\left\{\mathbf{A}_{2} \mathbf{B}_{1}\right\}$, and $\left\{\mathbf{A}_{1} \mathbf{B}_{1}, \mathbf{A}_{2} \mathbf{B}_{1}\right\}$
- If workers knew the batch size is 1 , they reduce the space of possibilities
- If workers knew the batch size is 2 , they know the exact request

New Privacy Model: Batch Size Privacy (BSP)

> The master wants to hide the number of requests/batches it wishes to compute

- Example:
- Consider a system where workers store two libraries $\left\{\mathbf{A}_{1}, \mathbf{A}_{2}\right\}$ and $\left\{\mathbf{B}_{1}\right\}$
- The user can request any group of matrix products e.g. $\left\{\mathbf{A}_{1} \mathbf{B}_{1}\right\},\left\{\mathbf{A}_{2} \mathbf{B}_{1}\right\}$, and $\left\{\mathbf{A}_{1} \mathbf{B}_{1}, \mathbf{A}_{2} \mathbf{B}_{1}\right\}$
- If workers knew the batch size is 1 , they reduce the space of possibilities
- If workers knew the batch size is 2 , they know the exact request

> Can even be problematic to systems without batch size limits

Practical Applications for Batch Size Privacy

Motivating Examples

> Inferring Size of Neural Networks

- Using batched coded computing, a user can train a network using model parallelism

Practical Applications for Batch Size Privacy

Motivating Examples

> Inferring Size of Neural Networks

- Using batched coded computing, a user can train a network using model parallelism
- Batch size can help infer the size of the network

Practical Applications for Batch Size Privacy

Motivating Examples

> Identifying Entities in the System

Practical Applications for Batch Size Privacy

Motivating Examples

> Identifying Entities in the System

- Batch size can help identify the identities of users or the use case of the request

Practical Applications for Batch Size Privacy

Motivating Examples

> Identifying Entities in the System

- Batch size can help identify the identities of users or the use case of the request
- Small IOT devices would generally request small batches

Practical Applications for Batch Size Privacy

Motivating Examples

> Identifying Entities in the System

- Batch size can help identify the identities of users or the use case of the request
- Small IOT devices would generally request small batches
- Large analytic engines would request large batch sizes

Demonstrative Problem of Batch Size Privacy

> In this work, we consider a demonstrative problem setting that incorporates both request and batch size privacy

Demonstrative Problem of Batch Size Privacy

> In this work, we consider a demonstrative problem setting that incorporates both request and batch size privacy
> For simplicity, we consider a scenario where workers store all the data and, thus, no data privacy is necessary

Demonstrative Problem of Batch Size Privacy

> In this work, we consider a demonstrative problem setting that incorporates both request and batch size privacy
> For simplicity, we consider a scenario where workers store all the data and, thus, no data privacy is necessary
> The user is allowed to request any number of matrix products among the data stored at the workers

Demonstrative Problem of Batch Size Privacy

> In this work, we consider a demonstrative problem setting that incorporates both request and batch size privacy
> For simplicity, we consider a scenario where workers store all the data and, thus, no data privacy is necessary
> The user is allowed to request any number of matrix products among the data stored at the workers
> We name this new system Fully Private Grouped Matrix Multiplication (FPGMM)

Fully Private Grouped Matrix Multiplication (FPGMM)

$>$ Assume workers store two libraries $\mathbf{A}_{\left[L_{A}\right]}=\left\{\mathbf{A}_{i} \in \mathbb{F}^{\alpha \times \alpha}, \forall i \in\left[L_{A}\right]\right\}$ and $\mathbf{B}_{\left[L_{B}\right]}=\left\{\mathbf{B}_{i} \in \mathbb{F}^{\alpha \times \alpha}, \forall i \in\left[L_{B}\right]\right\}$

Fully Private Grouped Matrix Multiplication (FPGMM)

$>$ Assume workers store two libraries $\mathbf{A}_{\left[L_{A}\right]}=\left\{\mathbf{A}_{i} \in \mathbb{F}^{\alpha \times \alpha}, \forall i \in\left[L_{A}\right]\right\}$ and $\mathbf{B}_{\left[L_{B}\right]}=\left\{\mathbf{B}_{i} \in \mathbb{F}^{\alpha \times \alpha}, \forall i \in\left[L_{B}\right]\right\}$
> A master selects uniformly at random a non-empty set $\mathcal{S} \subseteq\left\{(i, j): i \in\left[L_{A}\right], j \in\left[L_{B}\right]\right\}$

Fully Private Grouped Matrix Multiplication (FPGMM)

$>$ Assume workers store two libraries $\mathbf{A}_{\left[L_{A}\right]}=\left\{\mathbf{A}_{i} \in \mathbb{F}^{\alpha \times \alpha}, \forall i \in\left[L_{A}\right]\right\}$ and $\mathbf{B}_{\left[L_{B}\right]}=\left\{\mathbf{B}_{i} \in \mathbb{F}^{\alpha \times \alpha}, \forall i \in\left[L_{B}\right]\right\}$
> A master selects uniformly at random a non-empty set $\mathcal{S} \subseteq\left\{(i, j): i \in\left[L_{A}\right], j \in\left[L_{B}\right]\right\}$
$>$ Goal: Calculate the matrix products $\mathbf{C}_{\mathcal{S}} \triangleq\left\{\mathbf{A}_{i} \mathbf{B}_{j}:(i, j) \in \mathcal{S}\right\}$ with the following requirements:

Fully Private Grouped Matrix Multiplication (FPGMM)

$>$ Assume workers store two libraries $\mathbf{A}_{\left[L_{A}\right]}=\left\{\mathbf{A}_{i} \in \mathbb{F}^{\alpha \times \alpha}, \forall i \in\left[L_{A}\right]\right\}$ and $\mathbf{B}_{\left[L_{B}\right]}=\left\{\mathbf{B}_{i} \in \mathbb{F}^{\alpha \times \alpha}, \forall i \in\left[L_{B}\right]\right\}$
> A master selects uniformly at random a non-empty set $\mathcal{S} \subseteq\left\{(i, j): i \in\left[L_{A}\right], j \in\left[L_{B}\right]\right\}$
$>$ Goal: Calculate the matrix products $\mathbf{C}_{\mathcal{S}} \triangleq\left\{\mathbf{A}_{i} \mathbf{B}_{j}:(i, j) \in \mathcal{S}\right\}$ with the following requirements:

- Small recovery threshold R, i.e. the minimum number of worker results needed in order for the master to decode

Fully Private Grouped Matrix Multiplication (FPGMM)

$>$ Assume workers store two libraries $\mathbf{A}_{\left[L_{A}\right]}=\left\{\mathbf{A}_{i} \in \mathbb{F}^{\alpha \times \alpha}, \forall i \in\left[L_{A}\right]\right\}$ and $\mathbf{B}_{\left[L_{B}\right]}=\left\{\mathbf{B}_{i} \in \mathbb{F}^{\alpha \times \alpha}, \forall i \in\left[L_{B}\right]\right\}$
> A master selects uniformly at random a non-empty set $\mathcal{S} \subseteq\left\{(i, j): i \in\left[L_{A}\right], j \in\left[L_{B}\right]\right\}$
$>$ Goal: Calculate the matrix products $\mathbf{C}_{\mathcal{S}} \triangleq\left\{\mathbf{A}_{i} \mathbf{B}_{j}:(i, j) \in \mathcal{S}\right\}$ with the following requirements:

- Small recovery threshold R, i.e. the minimum number of worker results needed in order for the master to decode
- Measure of straggler resilience

Fully Private Grouped Matrix Multiplication (FPGMM)

$>$ Assume workers store two libraries $\mathbf{A}_{\left[L_{A}\right]}=\left\{\mathbf{A}_{i} \in \mathbb{F}^{\alpha \times \alpha}, \forall i \in\left[L_{A}\right]\right\}$ and $\mathbf{B}_{\left[L_{B}\right]}=\left\{\mathbf{B}_{i} \in \mathbb{F}^{\alpha \times \alpha}, \forall i \in\left[L_{B}\right]\right\}$
> A master selects uniformly at random a non-empty set $\mathcal{S} \subseteq\left\{(i, j): i \in\left[L_{A}\right], j \in\left[L_{B}\right]\right\}$
$>$ Goal: Calculate the matrix products $\mathbf{C}_{\mathcal{S}} \triangleq\left\{\mathbf{A}_{i} \mathbf{B}_{j}:(i, j) \in \mathcal{S}\right\}$ with the following requirements:

- Small recovery threshold R, i.e. the minimum number of worker results needed in order for the master to decode
- Measure of straggler resilience
- Flexible computation and communication overhead

Fully Private Grouped Matrix Multiplication (FPGMM)

$>$ Assume workers store two libraries $\mathbf{A}_{\left[L_{A}\right]}=\left\{\mathbf{A}_{i} \in \mathbb{F}^{\alpha \times \alpha}, \forall i \in\left[L_{A}\right]\right\}$ and $\mathbf{B}_{\left[L_{B}\right]}=\left\{\mathbf{B}_{i} \in \mathbb{F}^{\alpha \times \alpha}, \forall i \in\left[L_{B}\right]\right\}$
> A master selects uniformly at random a non-empty set $\mathcal{S} \subseteq\left\{(i, j): i \in\left[L_{A}\right], j \in\left[L_{B}\right]\right\}$
$>$ Goal: Calculate the matrix products $\mathbf{C}_{\mathcal{S}} \triangleq\left\{\mathbf{A}_{i} \mathbf{B}_{j}:(i, j) \in \mathcal{S}\right\}$ with the following requirements:

- Small recovery threshold R, i.e. the minimum number of worker results needed in order for the master to decode
- Measure of straggler resilience
- Flexible computation and communication overhead
- Privacy against any T colluding workers

Fully Private Grouped Matrix Multiplication (FPGMM)

$>$ Assume workers store two libraries $\mathbf{A}_{\left[L_{A}\right]}=\left\{\mathbf{A}_{i} \in \mathbb{F}^{\alpha \times \alpha}, \forall i \in\left[L_{A}\right]\right\}$ and $\mathbf{B}_{\left[L_{B}\right]}=\left\{\mathbf{B}_{i} \in \mathbb{F}^{\alpha \times \alpha}, \forall i \in\left[L_{B}\right]\right\}$

- A master selects uniformly at random a non-empty set $\mathcal{S} \subseteq\left\{(i, j): i \in\left[L_{A}\right], j \in\left[L_{B}\right]\right\}$
$>$ Goal: Calculate the matrix products $\mathbf{C}_{\mathcal{S}} \triangleq\left\{\mathbf{A}_{i} \mathbf{B}_{j}:(i, j) \in \mathcal{S}\right\}$ with the following requirements:
- Small recovery threshold R, i.e. the minimum number of worker results needed in order for the master to decode
- Measure of straggler resilience
- Flexible computation and communication overhead
- Privacy against any T colluding workers
- Any group of T workers cannot learn anything about \mathcal{S} given their received queries, even the cardinality of \mathcal{S}

Model Overview

Protocol :

Query: Master sends querries $\mathbf{q}_{[N]}$ to each worker
Download: Workers output $\mathbf{U}_{i}=f\left(\mathbf{A}_{\left[L_{A}\right]}, \mathbf{B}_{\left[L_{B}\right]}, \mathbf{q}_{i}\right)$

Novelty of Problem

> In most coded computation settings, the workers are allowed to know something about the encoding process

Novelty of Problem

> In most coded computation settings, the workers are allowed to know something about the encoding process

- For example, in polynomial coded based schemes, it is ok for workers to know the degree of the polynomial

Novelty of Problem

> In most coded computation settings, the workers are allowed to know something about the encoding process

- For example, in polynomial coded based schemes, it is ok for workers to know the degree of the polynomial
- Since batch size impacts the encoding process, we need to further limit the knowledge of the workers to ensure BSP

Novelty of Problem

> In most coded computation settings, the workers are allowed to know something about the encoding process

- For example, in polynomial coded based schemes, it is ok for workers to know the degree of the polynomial
> Since batch size impacts the encoding process, we need to further limit the knowledge of the workers to ensure BSP
- A related topic is function privacy which focused on:

Novelty of Problem

> In most coded computation settings, the workers are allowed to know something about the encoding process

- For example, in polynomial coded based schemes, it is ok for workers to know the degree of the polynomial
> Since batch size impacts the encoding process, we need to further limit the knowledge of the workers to ensure BSP
$>$ A related topic is function privacy which focused on:
- Complex Polynomial Evaluations (Raviv '19)

Novelty of Problem

> In most coded computation settings, the workers are allowed to know something about the encoding process

- For example, in polynomial coded based schemes, it is ok for workers to know the degree of the polynomial
- Since batch size impacts the encoding process, we need to further limit the knowledge of the workers to ensure BSP
$>$ A related topic is function privacy which focused on:
- Complex Polynomial Evaluations (Raviv '19)
- Simple Linear Combinations (Sun '18)

Novelty of Problem

> In most coded computation settings, the workers are allowed to know something about the encoding process

- For example, in polynomial coded based schemes, it is ok for workers to know the degree of the polynomial
> Since batch size impacts the encoding process, we need to further limit the knowledge of the workers to ensure BSP
$>$ A related topic is function privacy which focused on:
- Complex Polynomial Evaluations (Raviv '19)
- Simple Linear Combinations (Sun '18)
> Our work falls between these two regimes since we focus on the bi-linear operation of matrix multiplication and batch processing

Novelty of Problem

> In most coded computation settings, the workers are allowed to know something about the encoding process

- For example, in polynomial coded based schemes, it is ok for workers to know the degree of the polynomial
> Since batch size impacts the encoding process, we need to further limit the knowledge of the workers to ensure BSP
- A related topic is function privacy which focused on:
- Complex Polynomial Evaluations (Raviv '19)
- Simple Linear Combinations (Sun '18)
> Our work falls between these two regimes since we focus on the bi-linear operation of matrix multiplication and batch processing
> Additionally, in FPGMM, data can be re-used across multiple request, unlike other works that focus on distinct data

Novelty of Problem

> By further limiting the knowledge of the workers, many state-of-the-art coded computation schemes are severly limited in:

Novelty of Problem

> By further limiting the knowledge of the workers, many state-of-the-art coded computation schemes are severly limited in:

- Optimizing the communication and computation costs

Novelty of Problem

> By further limiting the knowledge of the workers, many state-of-the-art coded computation schemes are severly limited in:

- Optimizing the communication and computation costs (this paper)

Novelty of Problem

> By further limiting the knowledge of the workers, many state-of-the-art coded computation schemes are severly limited in:

- Optimizing the communication and computation costs (this paper)
- Providing other forms of privacy such as privacy from the master

Novelty of Problem

> By further limiting the knowledge of the workers, many state-of-the-art coded computation schemes are severly limited in:

- Optimizing the communication and computation costs (this paper)
- Providing other forms of privacy such as privacy from the master (ongoing work)

Outline

1 Background and Motivation

2 Our Scheme

3 Privacy from the Master

Useful Tool: Interpolation of Rational Functions

Rational Polynomial with Fixed Poles

$$
F(z)=\sum_{i=1}^{N} \sum_{j=1}^{u_{i}} \frac{e_{i, j}}{\left(z-f_{i}\right)^{j}}+\sum_{j=0}^{K-M-1} e_{0, j} z^{j}
$$

$f_{1}, f_{2}, \ldots, f_{N}$ are fixed
$>$ Can interpolate $F(z)$ if the number of interpolation points is equal to the number of rational and polynomial terms (Gasca '89)

Useful Tool: Interpolation of Rational Functions

Rational Polynomial with Fixed Poles

$$
F(z)=\sum_{i=1}^{N} \sum_{j=1}^{u_{i}} \frac{e_{i, j}}{\left(z-f_{i}\right)^{j}}+\sum_{j=0}^{K-M-1} e_{0, j} z^{j}
$$

$f_{1}, f_{2}, \ldots, f_{N}$ are fixed
$>$ Can interpolate $F(z)$ if the number of interpolation points is equal to the number of rational and polynomial terms (Gasca '89)
> Additionally, there are fast methods of interpolation that are comparable to polynomial interpolation (Olshevsky '01)

Another Tool: Cross-Subspace Alignment Codes

> Cross Subspace Alignment (CSA) codes are a coded computation scheme for calculating batches of matrix products


```
Recovery Threshold = # of Terms
```

Goal: Minimizing the \# of Garbage Terms

Another Tool: Cross-Subspace Alignment Codes

> Cross Subspace Alignment (CSA) codes are a coded computation scheme for calculating batches of matrix products

- Utilizes rational functions in order to encode the data and extract the desired terms

Another Tool: Cross-Subspace Alignment Codes

> Cross Subspace Alignment (CSA) codes are a coded computation scheme for calculating batches of matrix products
> Utilizes rational functions in order to encode the data and extract the desired terms
$>$ Allows for flexibility in communication and computation costs due to its unique grouping capability

Grouping Structure of CSA codes

Grouping Structure of CSA codes

Group 1 : $\mathbf{A}_{1} \mathbf{B}_{1}$
Group 2 : $\mathbf{A}_{2} \mathbf{B}_{2}$

Group 3 : $\mathbf{A}_{3} \mathbf{B}_{3}$
Group 4 : $\mathbf{A}_{4} \mathbf{B}_{4}$

Grouping Structure of CSA codes

Group 1 : $\mathbf{A}_{1} \mathbf{B}_{1}$
Group 2 : $\mathbf{A}_{2} \mathbf{B}_{2}$

Group 3 : $\mathbf{A}_{3} \mathbf{B}_{3}$
Group 4 : $\mathbf{A}_{4} \mathbf{B}_{4}$
> Grouping reduces the recovery threshold at the cost of $\underline{\text { more computation }}$

Grouping Structure of CSA codes

Group 1 : $\mathbf{A}_{1} \mathbf{B}_{1}$
Group 2 : $\mathbf{A}_{2} \mathbf{B}_{2}$

Group 3 : $\mathbf{A}_{3} \mathbf{B}_{3}$
Group 4 : $\mathbf{A}_{4} \mathbf{B}_{4}$
> Grouping reduces the recovery threshold at the cost of more computation
$>$ The number of groups reveals information about the batch size which breaks privacy

Key Idea for Our Scheme

$>$ Consider the following partitioning of the matrices given parameters m and n :

$$
\mathbf{A}_{i}=\left[\begin{array}{c}
\mathbf{A}_{i, 1} \tag{1}\\
\vdots \\
\mathbf{A}_{i, m}
\end{array}\right] \forall i \in\left[L_{A}\right], \mathbf{B}_{j}=\left[\begin{array}{lll}
\mathbf{B}_{j, 1} & \cdots & \mathbf{B}_{j, n}
\end{array}\right], \forall j \in\left[L_{B}\right]
$$

Key Idea for Our Scheme

$>$ Consider the following partitioning of the matrices given parameters m and n :

$$
\mathbf{A}_{i}=\left[\begin{array}{c}
\mathbf{A}_{i, 1} \tag{1}\\
\vdots \\
\mathbf{A}_{i, m}
\end{array}\right] \forall i \in\left[L_{A}\right], \mathbf{B}_{j}=\left[\begin{array}{lll}
\mathbf{B}_{j, 1} & \cdots & \mathbf{B}_{j, n}
\end{array}\right], \forall j \in\left[L_{B}\right]
$$

> If the master wants $\mathbf{A}_{i} \mathbf{B}_{j}$, then a sufficient condition is to get $\mathbf{A}_{i} \mathbf{B}_{j}=\left\{\mathbf{A}_{i, a} \mathbf{B}_{j, b}\right\}_{a \in[m], b \in[n]}$

Key Idea for Our Scheme

> Consider the following partitioning of the matrices given parameters m and n :

$$
\mathbf{A}_{i}=\left[\begin{array}{c}
\mathbf{A}_{i, 1} \tag{1}\\
\vdots \\
\mathbf{A}_{i, m}
\end{array}\right] \forall i \in\left[L_{A}\right], \mathbf{B}_{j}=\left[\begin{array}{lll}
\mathbf{B}_{j, 1} & \cdots & \mathbf{B}_{j, n}
\end{array}\right], \forall j \in\left[L_{B}\right]
$$

> If the master wants $\mathbf{A}_{i} \mathbf{B}_{j}$, then a sufficient condition is to get $\mathbf{A}_{i} \mathbf{B}_{j}=\left\{\mathbf{A}_{i, a} \mathbf{B}_{j, b}\right\}_{a \in[m], b \in[n]}$
> Hence, a sufficient condition to get $\mathbf{C}_{\mathcal{S}}$ is to calculate $\left\{\mathbf{A}_{i, q} \mathbf{B}_{j, s}:(i, j) \in \mathcal{S},(q, s) \in[m] \times[n]\right\}$

Key Idea for Our Scheme

$>$ Consider the following partitioning of the matrices given parameters m and n :

$$
\mathbf{A}_{i}=\left[\begin{array}{c}
\mathbf{A}_{i, 1} \tag{1}\\
\vdots \\
\mathbf{A}_{i, m}
\end{array}\right] \forall i \in\left[L_{A}\right], \mathbf{B}_{j}=\left[\begin{array}{lll}
\mathbf{B}_{j, 1} & \cdots & \mathbf{B}_{j, n}
\end{array}\right], \forall j \in\left[L_{B}\right]
$$

$>$ If the master wants $\mathbf{A}_{i} \mathbf{B}_{j}$, then a sufficient condition is to get $\mathbf{A}_{i} \mathbf{B}_{j}=\left\{\mathbf{A}_{i, a} \mathbf{B}_{j, b}\right\}_{a \in[m], b \in[n]}$
> Hence, a sufficient condition to get $\mathbf{C}_{\mathcal{S}}$ is to calculate $\left\{\mathbf{A}_{i, q} \mathbf{B}_{j, s}:(i, j) \in \mathcal{S},(q, s) \in[m] \times[n]\right\}$
> This is another instance of FPGMM but the batch size is now a multiple of $m n$

Grouping Independently of the Batch Size

> Let us re-index the submatrices as follows:

$$
\begin{aligned}
& \widetilde{\mathbf{A}}_{i}=\mathbf{A}_{\left\lfloor\frac{i-1}{m}\right\rfloor+1,(i-1} \\
& \widetilde{\mathbf{B}}_{j}=\mathbf{B}_{\left\lfloor\frac{j-1}{n}\right\rfloor+1,(j-1} \\
&\bmod n)+1 \\
&, i \in\left[m L_{A}\right] \\
&
\end{aligned}
$$

Grouping Independently of the Batch Size

> Let us re-index the submatrices as follows:

$$
\begin{aligned}
& \widetilde{\mathbf{A}}_{i}=\mathbf{A}_{\left\lfloor\frac{i-1}{m}\right\rfloor+1,(i-1} \\
& \widetilde{\mathbf{B}}_{j}=\mathbf{B}_{\left\lfloor\frac{j-1}{n}\right\rfloor+1,(j-1} \\
&\bmod n)+1 \\
&, i \in\left[m L_{A}\right] \\
&
\end{aligned}
$$

- We can define a new FPGMM problem with computation list $\widetilde{\mathcal{S}}$:

$$
\widetilde{\mathcal{S}}=\{m(i-1)+q, n(j-1)+s:(i, j) \in \mathcal{S},(q, s) \in[m] \times[n]\}
$$

Grouping Independently of the Batch Size

> Let us re-index the submatrices as follows:

$$
\begin{aligned}
& \widetilde{\mathbf{A}}_{i}=\mathbf{A}_{\left\lfloor\frac{i-1}{m}\right\rfloor+1,(i-1} \\
& \widetilde{\mathbf{B}}_{j}=\mathbf{B}_{\left\lfloor\frac{j-1}{n}\right\rfloor+1,(j-1} \\
&\bmod n)+1 \\
&, i \in\left[m L_{A}\right] \\
&
\end{aligned}
$$

- We can define a new FPGMM problem with computation list $\widetilde{\mathcal{S}}$:

$$
\widetilde{\mathcal{S}}=\{m(i-1)+q, n(j-1)+s:(i, j) \in \mathcal{S},(q, s) \in[m] \times[n]\}
$$

> Fact: $m n \mid \widetilde{\mathcal{S}}$

Grouping Independently of the Batch Size

> Let us re-index the submatrices as follows:

$$
\begin{aligned}
& \widetilde{\mathbf{A}}_{i}=\mathbf{A}_{\left\lfloor\frac{i-1}{m}\right\rfloor+1,(i-1} \\
& \widetilde{\mathbf{B}}_{j}=\mathbf{B}_{\left\lfloor\frac{j-1}{n}\right\rfloor+1,(j-1} \\
&\bmod n)+1 \\
&, i \in\left[m L_{A}\right] \\
&
\end{aligned}
$$

> We can define a new FPGMM problem with computation list $\widetilde{\mathcal{S}}$:

$$
\widetilde{\mathcal{S}}=\{m(i-1)+q, n(j-1)+s:(i, j) \in \mathcal{S},(q, s) \in[m] \times[n]\}
$$

> Fact: $m n \mid \widetilde{\mathcal{S}}$
> Key Idea: We can group according to the partitioning parameters and not the original batch size

Grouping Independently of the Batch Size

> Let us re-index the submatrices as follows:

$$
\begin{aligned}
& \widetilde{\mathbf{A}}_{i}=\mathbf{A}_{\left\lfloor\frac{i-1}{m}\right\rfloor+1,(i-1} \\
& \widetilde{\mathbf{B}}_{j}=\mathbf{B}_{\left\lfloor\frac{j-1}{n}\right\rfloor+1,(j-1} \\
&\bmod n)+1 \\
&, i \in\left[m L_{A}\right] \\
&
\end{aligned}
$$

> We can define a new FPGMM problem with computation list $\widetilde{\mathcal{S}}$:

$$
\widetilde{\mathcal{S}}=\{m(i-1)+q, n(j-1)+s:(i, j) \in \mathcal{S},(q, s) \in[m] \times[n]\}
$$

> Fact: $m n \mid \widetilde{\mathcal{S}}$
> Key Idea: We can group according to the partitioning parameters and not the original batch size
> Hence, we can still achieve flexibility in overhead costs without compromising privacy

Our Scheme

We breakdown our scheme into 3 main stages:
1 Encoding
2 Query and Computation
3 Decoding

Encoding Phase: Create Grouping

1 The master determines the partitioning parameters m and n and the grouping parameter r such that $r \mid m n$

Encoding Phase: Create Grouping

1 The master determines the partitioning parameters m and n and the grouping parameter r such that $r \mid m n$
2 The master groups $\widetilde{\mathcal{S}}$ into r equal, non-overlapping groups of size $\delta=\frac{|\mathcal{S}| m n}{r}$ denoted by $\mathcal{Q}_{1}, \ldots, \mathcal{Q}_{r}$

Encoding Phase: Create Grouping

1 The master determines the partitioning parameters m and n and the grouping parameter r such that $r \mid m n$
2 The master groups $\widetilde{\mathcal{S}}$ into r equal, non-overlapping groups of size $\delta=\frac{|\mathcal{S}| m n}{r}$ denoted by $\mathcal{Q}_{1}, \ldots, \mathcal{Q}_{r}$
3 For each $(i, j) \in \widetilde{\mathcal{S}}$, the master associates a distinct element $f_{i, j}$

Encoding Phase: Create Encoding Functions

4 The master then creates the encoding functions for $k \in[r]$:

$$
\begin{aligned}
a_{i, k}(x) & =\omega_{k}(x)\left(\sum_{(q, s) \in \mathcal{Q}_{k}: q=i} \frac{1}{\left(x-f_{q, s}\right)}+z_{i, k}^{a}(x)\right) \\
b_{j, k}(x) & =\sum_{(q, s) \in \mathcal{Q}_{k}: s=j} \frac{1}{\left(x-f_{q, s}\right)}+z_{j, k}^{b}(x) \\
\omega_{k}(x) & =\prod_{(i, j) \in \mathcal{Q}_{k}}\left(x-f_{i, j}\right)
\end{aligned}
$$

Encoding Phase: Create Encoding Functions

4 The master then creates the encoding functions for $k \in[r]$:

$$
\begin{aligned}
a_{i, k}(x) & =\omega_{k}(x)\left(\sum_{(q, s) \in \mathcal{Q}_{k}: q=i} \frac{1}{\left(x-f_{q, s}\right)}+z_{i, k}^{a}(x)\right) \\
b_{j, k}(x) & =\sum_{(q, s) \in \mathcal{Q}_{k}: s=j} \frac{1}{\left(x-f_{q, s}\right)}+z_{j, k}^{b}(x) \\
\omega_{k}(x) & =\prod_{(i, j) \in \mathcal{Q}_{k}}\left(x-f_{i, j}\right)
\end{aligned}
$$

$\bullet z_{i, k}^{a}(x)$ and $z_{j, k}^{b}(x)$ are random polynomials of degree $T-1$

Encoding Phase: Create Encoding Functions

4 The master then creates the encoding functions for $k \in[r]$:

$$
\begin{aligned}
a_{i, k}(x) & =\omega_{k}(x)\left(\sum_{(q, s) \in \mathcal{Q}_{k}: q=i} \frac{1}{\left(x-f_{q, s}\right)}+z_{i, k}^{a}(x)\right) \\
b_{j, k}(x) & =\sum_{(q, s) \in \mathcal{Q}_{k}: s=j} \frac{1}{\left(x-f_{q, s}\right)}+z_{j, k}^{b}(x) \\
\omega_{k}(x) & =\prod_{(i, j) \in \mathcal{Q}_{k}}\left(x-f_{i, j}\right)
\end{aligned}
$$

- $z_{i, k}^{a}(x)$ and $z_{j, k}^{b}(x)$ are random polynomials of degree $T-1$
- By Shamir's secret sharing scheme, ensures that any T evaluations of $a_{i, k}(x)$ and $b_{j, k}(x)$ are uniformly random variables

Encoding Phase: Create Encoding Functions

4 The master then creates the encoding functions for $k \in[r]$:

$$
\begin{aligned}
a_{i, k}(x) & =\omega_{k}(x)\left(\sum_{(q, s) \in \mathcal{Q}_{k}: q=i} \frac{1}{\left(x-f_{q, s}\right)}+z_{i, k}^{a}(x)\right) \\
b_{j, k}(x) & =\sum_{(q, s) \in \mathcal{Q}_{k}: s=j} \frac{1}{\left(x-f_{q, s}\right)}+z_{j, k}^{b}(x) \\
\omega_{k}(x) & =\prod_{(i, j) \in \mathcal{Q}_{k}}\left(x-f_{i, j}\right)
\end{aligned}
$$

- $a_{i, k}(x)$ and $b_{j, k}(x)$ have the following property:

$$
a_{i, k}(x) b_{j, k}(x)=\beta_{i, j, k}(x)+ \begin{cases}\frac{\gamma^{i, j, k}}{\left(x-f_{i, j}\right)} & (i, j) \in \mathcal{Q}_{k}, \\ 0 & \text { otherwise }\end{cases}
$$

where $\gamma^{i, j, k}$ is a non-zero constant and $\beta_{i, j, k}(x)$ is a polynomial of degree $\delta+2 T-2$

Query and Computation

1 For worker $g \in[N]$, the master associates an element x_{g} that is distinct from $\left\{f_{i, j}:(i, j) \in \widetilde{\mathcal{S}}\right\}$

Query and Computation

1 For worker $g \in[N]$, the master associates an element x_{g} that is distinct from $\left\{f_{i, j}:(i, j) \in \widetilde{\mathcal{S}}\right\}$
2 The master then constructs a query for each worker that contains the following:

Query and Computation

1 For worker $g \in[N]$, the master associates an element x_{g} that is distinct from $\left\{f_{i, j}:(i, j) \in \widetilde{\mathcal{S}}\right\}$
2 The master then constructs a query for each worker that contains the following:

Query and Computation

1 For worker $g \in[N]$, the master associates an element x_{g} that is distinct from $\left\{f_{i, j}:(i, j) \in \widetilde{\mathcal{S}}\right\}$
2 The master then constructs a query for each worker that contains the following:

- The partitioning parameters m and n

Query and Computation

1 For worker $g \in[N]$, the master associates an element x_{g} that is distinct from $\left\{f_{i, j}:(i, j) \in \widetilde{\mathcal{S}}\right\}$
2 The master then constructs a query for each worker that contains the following:

- The partitioning parameters m and n
- The grouping parameter r

Query and Computation

1 For worker $g \in[N]$, the master associates an element x_{g} that is distinct from $\left\{f_{i, j}:(i, j) \in \widetilde{\mathcal{S}}\right\}$
2 The master then constructs a query for each worker that contains the following:

- The partitioning parameters m and n
- The grouping parameter r
- The encoding coefficients $\left\{\left\{a_{i, k}\left(x_{g}\right)\right\}_{i=1}^{m L_{A}}\right\}_{k=1}^{r},\left\{\left\{b_{j, k}\left(x_{g}\right)\right\}_{j=1}^{n L_{B}}\right\}_{k=1}^{r}$

Query and Computation

1 For worker $g \in[N]$, the master associates an element x_{g} that is distinct from $\left\{f_{i, j}:(i, j) \in \widetilde{\mathcal{S}}\right\}$
2 The master then constructs a query for each worker that contains the following:

- The partitioning parameters m and n
- The grouping parameter r
- The encoding coefficients $\left\{\left\{a_{i, k}\left(x_{g}\right)\right\}_{i=1}^{m L_{A}}\right\}_{k=1}^{r},\left\{\left\{b_{j, k}\left(x_{g}\right)\right\}_{j=1}^{n L_{B}}\right\}_{k=1}^{r}$
$\underline{\text { Any } T \text { collection of these queries does not reveal anything about } \mathcal{S}}$

Query and Computation

3 The worker then partitions the matrices and encodes them using the encoding parameters:

$$
\widehat{\mathbf{A}}_{k}=\sum_{i=1}^{m L_{A}} \widetilde{\mathbf{A}}_{i} a_{i, k}\left(x_{g}\right), \widehat{\mathbf{B}}_{k}=\sum_{j=1}^{n L_{B}} \widetilde{\mathbf{B}}_{j} b_{j, k}\left(x_{g}\right)
$$

Query and Computation

3 The worker then partitions the matrices and encodes them using the encoding parameters:

$$
\widehat{\mathbf{A}}_{k}=\sum_{i=1}^{m L_{A}} \widetilde{\mathbf{A}}_{i} a_{i, k}\left(x_{g}\right), \widehat{\mathbf{B}}_{k}=\sum_{j=1}^{n L_{B}} \widetilde{\mathbf{B}}_{j} b_{j, k}\left(x_{g}\right)
$$

4 The worker computes and outputs:

$$
\sum_{k=1}^{r} \widehat{\mathbf{A}}_{k} \widehat{\mathbf{B}}_{k}
$$

Query and Computation

3 The worker then partitions the matrices and encodes them using the encoding parameters:

$$
\widehat{\mathbf{A}}_{k}=\sum_{i=1}^{m L_{A}} \widetilde{\mathbf{A}}_{i} a_{i, k}\left(x_{g}\right), \widehat{\mathbf{B}}_{k}=\sum_{j=1}^{n L_{B}} \widetilde{\mathbf{B}}_{j} b_{j, k}\left(x_{g}\right)
$$

4 The worker computes and outputs:

$$
\sum_{k=1}^{r} \widehat{\mathbf{A}}_{k} \widehat{\mathbf{B}}_{k}=\sum_{k=1}^{r} \sum_{i=1}^{m L_{A}} \sum_{j=1}^{n L_{B}} \widetilde{\mathbf{A}}_{i} \widetilde{\mathbf{B}}_{j} a_{i, k}\left(x_{g}\right) b_{j, k}\left(x_{g}\right)
$$

Query and Computation

3 The worker then partitions the matrices and encodes them using the encoding parameters:

$$
\widehat{\mathbf{A}}_{k}=\sum_{i=1}^{m L_{A}} \widetilde{\mathbf{A}}_{i} a_{i, k}\left(x_{g}\right), \widehat{\mathbf{B}}_{k}=\sum_{j=1}^{n L_{B}} \widetilde{\mathbf{B}}_{j} b_{j, k}\left(x_{g}\right)
$$

4 The worker computes and outputs:

$$
\begin{aligned}
& \sum_{k=1}^{r} \widehat{\mathbf{A}}_{k} \widehat{\mathbf{B}}_{k}=\sum_{k=1}^{r} \sum_{i=1}^{m L_{A}} \sum_{j=1}^{n L_{B}} \widetilde{\mathbf{A}}_{i} \widetilde{\mathbf{B}}_{j} a_{i, k}\left(x_{g}\right) b_{j, k}\left(x_{g}\right) \\
= & \sum_{k=1}^{r}\left(\sum_{(i, j) \in \mathcal{Q}_{k}} \frac{\gamma^{i, j, k} \widetilde{\mathbf{A}}_{i} \widetilde{\mathbf{B}}_{j}}{\left(x_{g}-f_{i, j}\right)}+\sum_{i=1}^{m L_{A}} \sum_{j=1}^{n L_{B}} \widetilde{\mathbf{A}}_{i} \widetilde{\mathbf{B}}_{j} \beta_{i, j, k}\left(x_{g}\right)\right) \\
= & \sum_{(i, j) \in \widetilde{\mathcal{S}}} \frac{\gamma^{i, j, k_{i, j}} \widetilde{\mathbf{A}}_{i} \widetilde{\mathbf{B}}_{j}}{\left(x_{g}-f_{i, j}\right)}+\mathbf{I}\left(x_{g}\right)
\end{aligned}
$$

where $\mathbf{I}(x)$ is a polynomial matrix of maximum degree $\delta+2 T-2$

Query and Computation

3 The worker then partitions the matrices and encodes them using the encoding parameters:

$$
\widehat{\mathbf{A}}_{k}=\sum_{i=1}^{m L_{A}} \widetilde{\mathbf{A}}_{i} a_{i, k}\left(x_{g}\right), \widehat{\mathbf{B}}_{k}=\sum_{j=1}^{n L_{B}} \widetilde{\mathbf{B}}_{j} b_{j, k}\left(x_{g}\right)
$$

4 The worker computes and outputs:

$$
\begin{aligned}
& \sum_{k=1}^{r} \widehat{\mathbf{A}}_{k} \widehat{\mathbf{B}}_{k}=\sum_{k=1}^{r} \sum_{i=1}^{m L_{A}} \sum_{j=1}^{n L_{B}} \widetilde{\mathbf{A}}_{i} \widetilde{\mathbf{B}}_{j} a_{i, k}\left(x_{g}\right) b_{j, k}\left(x_{g}\right) \\
= & \sum_{k=1}^{r}\left(\sum_{(i, j) \in \mathcal{Q}_{k}} \frac{\gamma^{i, j, k} \widetilde{\mathbf{A}}_{i} \widetilde{\mathbf{B}}_{j}}{\left(x_{g}-f_{i, j}\right)}+\sum_{i=1}^{m L_{A}} \sum_{j=1}^{n L_{B}} \widetilde{\mathbf{A}}_{i} \widetilde{\mathbf{B}}_{j} \beta_{i, j, k}\left(x_{g}\right)\right) \\
= & \sum_{(i, j) \in \widetilde{\mathcal{S}}} \frac{\gamma^{i, j, k_{i, j}} \widetilde{\mathbf{A}}_{i} \widetilde{\mathbf{B}}_{j}}{\left(x_{g}-f_{i, j}\right)}+\mathbf{I}\left(x_{g}\right)
\end{aligned}
$$

where $\mathbf{I}(x)$ is a polynomial matrix of maximum degree $\delta+2 T-2$

Decoding utilizing Rational Function Interpolation

1 The master now gets evaluations of the following function

$$
\sum_{(i, j) \in \widetilde{\mathcal{S}}} \frac{\gamma^{i, j, k} \widetilde{\mathbf{A}}_{i} \widetilde{\mathbf{B}}_{j}}{\left(x-f_{i, j}\right)}+\mathbf{I}(x)
$$

Decoding utilizing Rational Function Interpolation

1 The master now gets evaluations of the following function

$$
\sum_{(i, j) \in \widetilde{\mathcal{S}}} \frac{\gamma^{i, j, k} \widetilde{\mathbf{A}}_{i} \widetilde{\mathbf{B}}_{j}}{\left(x-f_{i, j}\right)}+\mathbf{I}(x)
$$

2 This function has $|\widetilde{\mathcal{S}}|=|\mathcal{S}| m n$ rational terms and $\delta+2 T-1=\frac{|\mathcal{S}| m n}{r}+2 T-1$ polynomial terms

Decoding utilizing Rational Function Interpolation

1 The master now gets evaluations of the following function

$$
\sum_{(i, j) \in \widetilde{\mathcal{S}}} \frac{\gamma^{i, j, k} \widetilde{\mathbf{A}}_{i} \widetilde{\mathbf{B}}_{j}}{\left(x-f_{i, j}\right)}+\mathbf{I}(x)
$$

2 This function has $|\widetilde{\mathcal{S}}|=|\mathcal{S}| m n$ rational terms and $\delta+2 T-1=\frac{|\mathcal{S}| m n}{r}+2 T-1$ polynomial terms
3 Can be interpolated from $\left(\frac{r+1}{r}\right)|\mathcal{S}| m n+2 T-1$ evaluations

Main Result

Achievability

Given parameters m, n, r such that $r \mid m n$, our scheme achieves
Recovery Threshold: $R=\left(\frac{r+1}{r}\right)|\mathcal{S}| m n+2 T-1$
Normalized Download Cost: $\frac{R}{|\mathcal{S}|} \times \frac{\alpha^{2}}{m n}=\alpha^{2}\left(\frac{r+1}{r}+\frac{2 T-1}{|\mathcal{S}| m n}\right)$
Normalized Computational Complexity: $\mathcal{O}\left(\frac{\alpha^{3} r}{|\mathcal{S}| m n}\right)$
while guaranteeing batch size privacy against any T colluding workers

Main Result

Achievability

Given parameters m, n, r such that $r \mid m n$, our scheme achieves
Recovery Threshold: $R=\left(\frac{r+1}{r}\right)|\mathcal{S}| m n+2 T-1$
Normalized Download Cost: $\frac{R}{|\mathcal{S}|} \times \frac{\alpha^{2}}{m n}=\alpha^{2}\left(\frac{r+1}{r}+\frac{2 T-1}{|\mathcal{S}| m n}\right)$
Normalized Computational Complexity: $\mathcal{O}\left(\frac{\alpha^{3} r}{|\mathcal{S}| m n}\right)$
while guaranteeing batch size privacy against any T colluding workers

Main Result

Achievability

Given parameters m, n, r such that $r \mid m n$, our scheme achieves
Recovery Threshold: $R=\left(\frac{r+1}{r}\right)|\mathcal{S}| m n+2 T-1$
Normalized Download Cost: $\frac{R}{|\mathcal{S}|} \times \frac{\alpha^{2}}{m n}=\alpha^{2}\left(\frac{r+1}{r}+\frac{2 T-1}{|\mathcal{S}| m n}\right)$
Normalized Computational Complexity: $\mathcal{O}\left(\frac{\alpha^{3} r}{|\mathcal{S}| m n}\right)$
while guaranteeing batch size privacy against any T colluding workers

Main Result

Achievability

Given parameters m, n, r such that $r \mid m n$, our scheme achieves
Recovery Threshold: $R=\left(\frac{r+1}{r}\right)|\mathcal{S}| m n+2 T-1$
Normalized Download Cost: $\frac{R}{|\mathcal{S}|} \times \frac{\alpha^{2}}{m n}=\alpha^{2}\left(\frac{r+1}{r}+\frac{2 T-1}{|\mathcal{S}| m n}\right)$
Normalized Computational Complexity: $\mathcal{O}\left(\frac{\alpha^{3} r}{|\mathcal{S}| m n}\right)$
while guaranteeing batch size privacy against any T colluding workers

Experimental Simulations

> The following simulations fix the partitioning such that $m n=24$.

Experimental Simulations

$>$ The following simulations fix the partitioning such that $m n=24$.

Experimental Simulations

$>$ The following simulations fix the partitioning such that $m n=24$.

Experimental Simulations

$>$ The following simulations fix the partitioning such that $m n=24$.

Outline

1 Background and Motivation

2 Our Scheme

3 Privacy from the Master

Privacy from the Master (PFM)

> Privacy from the master (PFM) is another privacy constraint where the master cannot learn anything beyond what they requested

Privacy from the Master (PFM)

> Privacy from the master (PFM) is another privacy constraint where the master cannot learn anything beyond what they requested
> In the context of FPGMM, the master cannot learn anything more about the matrix libraries given the messages it receives, beyond the information that $\mathrm{C}_{\mathcal{S}}$ provides

Privacy from the Master (PFM)

> Privacy from the master (PFM) is another privacy constraint where the master cannot learn anything beyond what they requested
> In the context of FPGMM, the master cannot learn anything more about the matrix libraries given the messages it receives, beyond the information that $\mathbf{C}_{\mathcal{S}}$ provides
> Batch size privacy incurs significant overhead with current state of the art techniques for PFM

Current Approaches to Handling PFM

> Most coded computation techniques encode desired terms into certain polynomial/rational basis functions

Current Approaches to Handling PFM

> Most coded computation techniques encode desired terms into certain polynomial/rational basis functions
> Thus, a natural solution to achieve PFM is adding random noise to the basis functions that do not contain the desired terms

Current Approaches to Handling PFM

> Most coded computation techniques encode desired terms into certain polynomial/rational basis functions
> Thus, a natural solution to achieve PFM is adding random noise to the basis functions that do not contain the desired terms
> Example: Generalized CSA codes with Noise Alignment (Chen '21) achieve PFM by adding noise to the polynomial terms (and a few rational terms)

Rational Bases
Desired Terms

> Polynomial Bases
> Garbage Terms

Privacy from the Master limits solutions to FPGMM

> To guarantee PFM, workers need to add a pessimistic amount of noise which significantly increases the recovery threshold

Privacy from the Master limits solutions to FPGMM

> We are currently researching novel techniques to address this issue based on recent advances in coded computation

Summary

> We initiated the first investigation into batch size privacy for coded computation

Summary

> We initiated the first investigation into batch size privacy for coded computation
> Introduced the novel problem of FPGMM that highlights the key issues of the new privacy model

Summary

> We initiated the first investigation into batch size privacy for coded computation
> Introduced the novel problem of FPGMM that highlights the key issues of the new privacy model

- We provided an achievable scheme utilizing CSA-like codes that guarantees privacy, offers good straggler resilience, and provides flexible communication and computation costs

Summary

> We initiated the first investigation into batch size privacy for coded computation
> Introduced the novel problem of FPGMM that highlights the key issues of the new privacy model

- We provided an achievable scheme utilizing CSA-like codes that guarantees privacy, offers good straggler resilience, and provides flexible communication and computation costs
> We highlighted that batch size privacy also complicates other privacy models such as privacy from the master and discuss our ongoing work into the topic

References

> (Gasca '89) M. Gasca et al.," Computation of rational interpolants with prescribed poles", Journal of Computation and Applied Math, 1989
> (Olshevsky '01) V. Olshevsky and A. Shokrollahi, "A superfast algorithm for confluent rational tangential interpolation problem via matrix-vector multiplication for confluent cauchy-like matrices," Structured Matrices in Mathematics, Computer Science, and Engineering I, 2001.
> (Sun '18) H. Sun et al., "The capacity of private computation." IEEE TIT 2018
> (Raviv '19) N. Raviv et al., "Private polynomial computation from Lagrange encoding." IEEE Transactions on Information Forensics and Security, 2019
> (Kim '19) M. Kim et al., "Private coded matrix multiplication," IEEE Transactions on Information Forensics and Security, 2019
> (Yu '20) Q. Yu et al.,"Entangled Polynomial Codes for Secure, Private, and Batch Distributed Matrix Multiplication: Breaking the "Cubic" Barrier", ISIT 2020
> (Chen '21) Chen, Zhen, et al. "GCSA codes with noise alignment for secure coded multi-party batch matrix multiplication." IEEE JSAIT, 2021
> (Zhu '21) J. Zhu et al., "Improved constructions for secure multi-party batch matrix multiplication." IEEE TCOM 2021
> (Zhu '22) J. Zhu and S. Li, "A systematic approach towards efficient private matrix multiplication," IEEE JSAIT, 2022

