Fully Private Grouped Matrix Multiplication

Lev Tauz and Lara Dolecek
Department of Electrical and Computer Engineering, University of California, Los Angeles, USA
levtauz@ucla.edu and dolecek @ee.ucla.edu

Abstract—In this paper, we consider the novel concept of batch
size privacy in distributed coded matrix multiplication which adds
the constraint that workers cannot learn the number of matrix
products being calculated. Batch size privacy helps hide the activity
of the master and prevents workers from discriminating users based
on usage patterns. As a primary example, we focus on the model of
fully private grouped matrix multiplication where a master wants to
compute a group of matrix products between two matrix libraries
that can be accessed by all workers while ensuring that any number
of prescribed colluding workers learn nothing about which matrix

products the master desires, nor the number of matrix products.

We present an achievable scheme using a variant of Cross-Subspace
Alignment (CSA) codes that offers flexibility in communication and
computation costs with good straggler resilience.

I. INTRODUCTION AND SYSTEM MODEL

With the arrival of Big Data, many modern data driven
applications are being outsourced to a distributed system of many
workers in order to achieve scalability. However, outsourcing
the computations and data storage across workers comes with
additional concerns such as the presence of stragglers (i.e.,
workers that fail or are slow to respond) who hamper the speed of
the system or the privacy concerns about storing confidential data
across many workers. Coded computation is a field of research
that tackles these issues utilizing techniques from channel coding
for a variety of system models [1]-[3]. In this work, we consider
the fundamental operation of large matrix multiplication which is
an important component for machine learning and data analysis.

The literature on coded matrix multiplication with privacy
concerns has tackled a variety of different models. For example,
secure and private matrix multiplication (SPMM) [1] tasks a
system to compute the product of a private matrix A with a
specific matrix B;, 1 < j < k, among a library of matrices
{B1,...,B;} which are stored at the workers while ensuring
the workers learn nothing about the matrix A and the index j.
Another example is fully private matrix multiplication (FPMM)
[2] where the workers store two libraries of matrices and the
master tasks the workers to privately calculate the product of two
desired matrices from the shared libraries while being oblivious
to the indices of the desired matrices. A further variation is
secure batch matrix multiplication (SBMM) [3] where the master
tasks the system to calculate the product of multiple matrix pairs
without the workers learning anything about the matrices.

In this work, we propose a brand new privacy consideration
known as batch size privacy where the master wants to hide the
number of batches, i.e. the number of matrix products, it wishes
to compute. If we look at the previous models, the master did
not care whether the workers knew how many matrix products
the master requested. This can be problematic, for example, in
SPMM if the user wishes to calculate all the matrix products
between A and {By,...,B;} in a short time and knowing the
batch size reveals which matrices were requested. Even schemes
for SBMM that consider multiple matrix products do not consider
batch size privacy and, often, use the fact that the workers know
the batch size to provide further optimization. From a practical
perspective, knowing the batch size can reveal to the workers the
type of entity that is asking for this request. For example, small
IOT devices would generally request small batches due to their

Protocol : Master
Query: Master sends querries qy) to each worker

Download: Workers output U; = f(A(L,], B(L,), ai) lj
Decode: Cs decoded from first R worker outputs D‘j_
Privacy Requirement: >

1(S;ar, AL, Biu,) = 0,97 € [N]|T| < 7| d1

Straggler

Coluding Libraries
Azal Bz

Fig. 1: System model of FPGMM.

targeted workload while large analytics engines would request
larger batch sizes. Being able to discriminate entities based on
their usage pattern can be problematic for users who wish to hide
their activity. Thus, there is significant merit in studying batch
size privacy and providing a novel coding scheme to address it.

To study batch size privacy, we consider a variation of FPMM
which we refer to as fully private grouped matrix multiplication
(FPGMM) where a master can request multiple matrix products,
i.e., a group of products, in a single request among two libraries
of matrices stored at the workers. Since the data is stored at the
workers, the master wishes to preserve the privacy of which matrix
product are requested and how many were requested. Formally,
assume a distributed system with one master and N workers.
All workers store two libraries of matrices Ay} = {A; €
Fg**,Vi € [La]} and By ) = {B; € Fg*“,Vi € [Lp]} where
FF, is a finite field of size ¢ and L 4, L are non-negative integers.'
Given a set S C [La] x [Lp], the master wants to obtain the
matrix products Cs £ {A;B; : (i,j) € S}. We assume that
S is equally likely to be any non-empty subset of [L 4] x [Lpg]
and is chosen independently of the data stored in the two matrix
libraries. The master does not want the workers to learn anything
about § including its cardinality.

The FPGMM scheme contains the following phases: 1)
Encoding Phase: The master designs queries q;, 7 € [N] based
on S; 2) Query and Computation: The master sends query
q;,% € [N] to worker . Worker ¢ then uses q; to encode the
data libraries using a function f(Az,),Bz,];q:) = U; and
outputs Uj;; 3) Reconstruction: The master downloads U; from
the servers. Some workers may be stragglers and fail to respond.
The master attempts to reconstruct Cgs from the responding
servers. Additionally, FPGMM requires that S is kept private from
up to T' colluding workers. This privacy requirement includes
both the elements and cardinality of S. The model is summarized
in Fig. 1.

For FPGMM, the important metrics are the following:

e Recovery Threshold R: The minimum number of worker
outputs needed in order to reconstruct Cg.

e Normalized Computational Complexity (NCC): The average
order of the number of arithmetic operations required to
compute the function f at each worker, normalized by |S|a?.

'We note that our schemes are applicable for non-square matrices and that we
focus on square matrices only for notational convenience.



o Normalized Download Cost (NDC): The total number of
symbols retrieved by the master normalized by the number
of symbols in Cg.

II. MAIN RESULT AND EXAMPLE
The main result is demonstrated in the following theorem.

Theorem 1. Assume a distributed system with N workers, a

computation list S, and T colluding workers. For any positive

integers m, n, r such that m|a, nla, rlmn, and [F,|> |S|mn+N,
there exists a privacy preserving scheme for up to T’ colluding
workers that achieves the following system metrics:

1
Recovery Threshold: R = (r +
,

R r+1 n 2T —1

r |S|mn
Additionally, r is the number of groups and provides no
information about S.

)[S|Imn + 2T — 1,

NDC , NCC:(’)(T) )

: |S|mn |S|mn

The full proof of Theorem 1 can be found in the full version
[4]. Now, we shall show an illustrative example to highlight
the key components of our scheme. Assume that Ly = Lg =
2 and that S = {(1,1),(1,2)}. As such, we want to retrieve
Cs = {A1B1, A1By}. Additionally, let T = 1 to protect privacy
against 1 curious worker.

One example of our scheme goes as follows. The master
specifies to the workers to partition the Bz, ;) matrices as follows:

Bj = [Bi,l Biyg} ,VJ (S [2]

Now, to calculate {A1B1, A1Bs}, a sufficient condition is to
calculate {A1By,}72_; U{A1B2,}7_,

Let fi1,fi,2,f21, and foo be distinct elements from Fy.
The master groups up the computations into two groups
{1&1]31717 A1B271} and {1&1B1727 A1B272}. Note that the group-
ing is arbitrary but the number of groups is carefully chosen.
If the number of groups was instead 4, then the workers can
easily determine that |S|= 2 due to knowledge of the partitioning
parameters. This limits the straightforward applicability of CSA
codes used for SBMM [3] to be used for FPGMM because they
are designed for grouping computations based on the size of the
batches, i.e. dependent on |S|. We address this issue by grouping
computations based on the partitioning parameters which are
chosen independently of S.

Consider the following encoding functions

St ol
1,1 2,1
aik(r) = we(r) x | 2 + m%m + z%f” i=1k=2,
0 i—2,
2
1
biaa(®) = 2y g o lelsek’ 3)

for 4,7,1,k € [2] where wi(z) = (z — fix)(x — f2x) and
2o Z?z  are random noise terms that are independently and
uniformly chosen from [F,. The master assigns each worker
g € [N] a distinct element z, from Fy \ {f1 1, f1,2, f21, fo.2}-
Thus, the query q4, g € [IN] that the master sends to worker g con-
tains the evaluations of the encoding functions {a; x(7y)}i kej2
and {bj;r(xg)}, 1 ke[, the partitioning parameters, and the
number of groups. Note that each encoding function contains
a uniformly random variable. By Shamir’s well-known secret
sharing scheme [5], each worker cannot gain any information

Varied [5], T = 10 Varied T, |s| = 10
\ - 5]=5 22 '\ - 1=;2
I5|=8 ] =
\ Bt s \ - T-10
\ - |5=12 £ 201\

Overhead due to
privacy increases
slowly with T

\ N \
Z1s \ Better Amortization g 1\
with H \
Larger Batch sizes

-—

000 002 004 006 008 olo 01
Normalized Computational Complexity

Fig. 2: Plots of NCC and NDC for fixed T (left) and fixed |S| (right).
about the coefficients in the encoding functions and, thus, cannot
learn anything about S. Hence, the scheme is 1" = 1 private.

After receiving q4, worker g then encodes the matrices using

2 2 2
A, = Z Aiai,k(xg), By = Z Z Bj,lbj,l,k(l'g) “4)
=1

j=11=1

0z 0a o5
Normalized Computational Complexity

for k € [2]. Now, the worker will calculate C(z,) = AB; +
A,B; where C(z,) can be simplified into the following form:

ABi, ABy; AiB;> AiBy>
(g = f11)  (zg—fo1) (29— f12) (25— f22)

+ I(zy)
5

where I(x) is a polynomial matrix that contains all the polynomial
terms in C(z,). Note that the maximum degree of I(x) is
maxyeg)(deg(wr(x))) +27 —2 =2+ 2% 1 — 2 = 2 since the
largest polynomial degree in A, and By, is deg(wy,(z)) + T — 1
and T — 1, respectively. We highlight the fact that all desired
matrices are coefficients to unique rational terms in Eq. (5). We
achieved this by encoding each term in a desired matrix product
with a unique root in the denominator so that when C(z) is
computed, the desired matrix product remains the only term with
the unique root in the denominator. One can think of w(z) as
a filter where all desired terms are kept with the rational terms
and all other terms are aligned into polynomial terms. It is well
know that functions of the form in Eq. (5) can be interpolated
if the number of evaluations is at least the number of rational
and polynomial terms. As such, the master needs only 7 worker
outputs since the polynomial terms have 3 coefficients and the
rational terms have 4 coefﬁcignts. Thus, the recovery threshold
is 7. Now, since C(z) € Fg 2, the NDC is Z. Additionally, we
see that to calculate C'(z) the worker had to encode the matrices
with complexity O (LAa2 + Lp %2 0‘;) =0 (6a2) and then
multiply and add the results with complexity O (a?). Since we as-
sume that « is very large, the NCC is O <a3 X IS\%) =0 (3).
Fig. 2 plots the NCC and NDC for both fixed T" and fixed |S|.
All points are achievable using our scheme and we can see from
the left plot that we get better amortization with larger batch
sizes without sacrificing privacy. The right plot demonstrates that
the overhead due to batch size privacy is small. As such, we
provide an efficient and flexible scheme to solve FPGMM.
REFERENCES

[1] Z. Jia and S. A. Jafar, “X-secure t-private information retrieval from mds
coded storage with byzantine and unresponsive servers,” IEEE Transactions
on Information Theory, vol. 66, pp. 7427-7438, July 2020.

[2] J. Zhu and S. Li, “A systematic approach towards efficient private matrix
multiplication,” IEEE Journal on Selected Areas in Information Theory,
vol. 3, pp. 257-274, June 2022.

[3] J. Zhu, Q. Yan, and X. Tang, “Improved constructions for secure multi-party
batch matrix multiplication,” IEEE Transactions on Communications, vol. 69,
pp. 76737690, Aug. 2021.

[4] L. Tauz and L. Dolecek, “Fully private grouped matrix multiplication with
colluding workers,” in IEEE International Symposium on Information Theory
(ISIT), pp. 2529-2534, 2023.

[5] A. Shamir, “How to share a secret,” Communications of the ACM, vol. 22,
pp. 612-613, Nov. 1979.



