
Swapping-Centric Neural Recording Systems
Muhammed Ugur

Yale University
Raghavendra Pradyumna Pothukuchi

Yale University
Abhishek Bhattacharjee

Yale University

Abstract
Neural interfaces read the activity of biological neurons to
help advance the neurosciences and offer treatment options
for severe neurological diseases. The total number of neurons
that are now being recorded using multi-electrode interfaces
is doubling roughly every 4-6 years [5]. However, process-
ing this exponentially-growing data in real-time under strict
power-constraints puts an exorbitant amount of pressure on
both compute and storage within traditional neural record-
ing systems. Existing systems deploy various accelerators for
better performance-per-watt while also integrating NVMs
for data querying and better treatment decisions. These accel-
erators have direct access to a limited amount of fast SRAM-
based memory that is unable to manage the growing data
rates. Swapping to the NVM becomes inevitable; however,
naive approaches are unable to complete during the refrac-
tory period of a neuron – i.e., a few milliseconds – which
disrupts timely disease treatment. We propose co-designing
accelerators and storage, with swapping as a primary design
goal, using theoretical and practical models of compute and
storage respectively to overcome these limitations.

1 Background and Motivation
Neural recording systems directly measure and process elec-
trophysiological data from the nervous system in real-time.
Applications running on these systems range from storing
data for offline analysis to providing closed-loop electrical
stimulation to suppress seizures in patients with refractory
epilepsy. The efficacy of these systems are determined by
the quality of signal and the total number of channels, i.e.,
independent streams of neural data, being recorded. This
is because many neurological and psychiatric disorders are
network-level, requiring detailed recordings of as many neu-
ral circuits as possible. This has led to the proliferation of
large-scale multi-electrode probes that are designed for in-
tracranial placement. As a result, the total number of neurons
that are being recorded have doubled roughly every 4-6 years
[5]. Current interfaces, such as the Neuropixel or Neuralink’s
N1 implant, record 144 Mbps and 545 Mbps of neural data re-
spectively, with the ultimate goal of reading Tbps to capture
the entire brain’s activity.

This exponential growth in data is pushing on-device neu-
ral signal processing to its limits, especially for invasive
brain-computer interfaces (BCIs). Invasive interfaces possess
up to two orders of magnitude better signal-to-noise ratio
over non-invasive methods, providing more advanced treat-
ment options. However, they must consume microwatts to
milliwatts of power for safe operation, i.e., they must not

heat more than 1◦C of surrounding tissue. Staying within
this low power regime while also supporting a variety of
BCI applications has been accomplished with a heteroge-
neous reconfigurable array of course-grained accelerators
in HALO (see Figure 1) [2]. However, these accelerators are
implemented for a fixed number of channels at design-time
and scale poorly as the number of channels increase.

Figure 1. Diagram for the most recent HALO processor [4];
composed of many unique accelerators, stitched together
on a low-power reconfigurable fabric with access to a NVM
(left). Partial tape-out of HALO at 12 nm (right).

Figure 2 shows the power consumption of storing the
working set of several signal processing accelerators in SRAM
as the number of channels increase. Given the importance of
power in this system, we rely on a detailed physical synthesis
flow instead of standard architectural modeling. It only takes
a single kernel, like the Fast Fourier Transform (FFT) at 128
samples, to overshoot a conservative 15 mW power budget
as the number of channels scale. Data movement between
accelerator memory and a better capacity-per-watt external
storage becomes inescapable. NVM technologies, specifically
NAND Flash, are a practical option and are already used in
BCI applications for storing partial computations and raw
signal data [4]. However, their bandwidth and latencies need
to be considered carefully to meet real-time deadlines and
stay within the power budget.

2 System Design
To better understand the impact of increasing channel counts
on system resources, we fix the overall data rate of the system
by reducing the sampling rate as channel counts grow. The
total amount of samples that each accelerator processes in a
given amount of time therefore remains constant across dif-
ferent channel/sampling-rate configurations. Figure 3 shows
the total amount of channel/sampling-rate configurations
that can be supported for the Butterworth Bandpass Filter
(BBF) on a 128GB Micron SLC NAND Flash chip [3].

1



Figure 2. Power usage of different accelerators when stor-
ing their working sets in SRAM as channel counts increase.
Some accelerators, like the Butterworth Bandpass Filter (BBF)
and Discrete Wavelet Transform (DWT), have configura-
tions which vary their working sets. FFT, Cross Correlation
(XCOR), and Dynamic Time Warping (DTW) are fixed at a
set number of samples per channel.

Naively moving data between the NVM and each of the
accelerators significantly limits the amount of channels sup-
ported without increasing the incoming data rate. These limi-
tations are largely due to backend storage latency and band-
width constraints. This analysis does not include power con-
sumption, which would further reduce the amount of con-
figurations supported. These constraints impose new design
decisions for communicating with the NVM in these multi-
accelerator systems to meet real-time deadlines. These chal-
lenges motivate the re-design of the accelerators and the
storage sub-systems to be swapping-centric. Reducing the
amount of data per I/O and the total number of I/Os per ac-
celerator is therefore critical to support increasing channel
counts at low-power.

External memory algorithms are a class of techniques used
to minimize the number of I/Os performed for an algorithm
given some storage model [1]. These models however are
outdated and do not consider EEPROMs like NAND Flash.
This work aims to incorporate these past techniques into
the hardware-software co-design process by extending the
algorithmic analysis to account for read/write performance
asymmetry and power characteristics. Prior external mem-
ory techniques also assume that the algorithm runs on a
CPU with fixed main memory. Our approach proposes cus-
tom ASICs in hardware that implement the algorithms with
the opportunity to add memory if necessary. This changes
the compute/data movement tradeoffs across the memory
hierarchy substantially and leads to unorthodox decisions at
design-time. Finally, we have the opportunity to turn theory
into hardwarewith this project by implementing our analysis
decisions into the next generation of HALO processors.

Figure 3. Shows the support of channel/sampling-rate con-
figurations (blue region) for a naive BBF swapping approach.
Configurations that cannot fit into the SRAM of BBF and
the storage controller require swapping. NVM bandwidth
restricts higher channel counts whereas NVM write latency
is too slow for smaller, yet uncacheable, working sets.

3 NVMModeling
We use an abstract model for NAND Flash that takes into
account data movement and power. This model includes
the standard chip, die, plane, block, and page hierarchy,
where multiple chips are connected together using a stan-
dard shared bus. Parallel operations exist across chips, dies,
and planes, where chip-level parallelism costs more power
due to turning on multiple chips at once. I/O costs include
the data movement and memory operation latency/energy
for page reads/programs. Global bandwidth is determined
by bus characteristics, whereas chip-level bandwidth is de-
termined by latency and/or simulation (e.g. using NVSim).
General NVM specifications are gathered primarily through
publicly available datasheets and other systems literature.
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