
Betty: Enabling Large-Scale GNN Training with Batch-Level Graph Partitioning

Shuangyan Yang1, Minjia Zhang2, Wenqian Dong1,3 and Dong Li1

1University of California Merced, 2Microsoft , 3Florida International University

Motivation Experiment Results
Mitigate the memory bottleneck, and enable 

large-scale GNN training within a single GPU

References
[1] Da Zheng, Xiang Song, Chengru Yang, Dominique LaSalle, Qidong Su, Minjie Wang, Chao Ma, and George Karypis. Distributed 
hybrid cpu and gpu training for graph neural networks on billion-scale graphs. arXiv preprint arXiv:2112.15345, 2021
[2] DGL. Deep Graph Library. https://www.dgl.ai/
[3] PyG. PyTorch Geometric. https://pytorch-geometric.readthedocs.io.
[4] Lingxiao Ma, Zhi Yang, Youshan Miao, Jilong Xue, Ming Wu, Lidong Zhou, and Yafei Dai. {NeuGraph}: Parallel deep neural 
network computation on large graphs. In 2019 USENIX Annual Technical Conference (USENIX ATC 19), pages 443–458, 2019.
[5] George Karypis and Vipin Kumar. Metis–unstructured graph partitioning and sparse matrix ordering system, version 2.0. 1995

Design
Batch-Level Partitioning: reduces the memory consumption via the batch-level partitioning 

and using both CPU and GPU memory to enable training of advanced GNNs on single GPU.

❑Micro-batch training in Betty

Partitioning the Multi-Level Bipartite for Micro–batch GNN Training

Dividing each batch into 𝐾
micro-batches, each 
micro-batch is still a 

hierarchical bipartite that is 

a subgraph of the original 

bipartite.

Betty breaks the memory capacity constraint, reduce 

the peak memory consumption up to 48.3%.

Compared with other graph partition methods, Betty can:

Enable advanced and efficient GNN training 

with hybrid CPU-GPU memory.

➢ Baselines

• We use three common graph partition algorithms: range 

partition, random partition, and Metis[5]. (The partition is 
applied on the IDs of output nodes.)

Sampling

Pros: Sample neighbors to compute the feature for a 

given node/subgraph. 

Cons: May cause loss of important neighbor information

that hurts the final model accuracy.

▪ Challenge : Easily exceeding GPU memory capacity.

To work around the memory capacity bottleneck, prior

work explored both algorithmic (sampling[1]) and 
system optimizations(DGL [2], PyTorch Geometric [3], 
and NeuGraph[4]).

System optimizations
Pros: support convenient and highly efficient graph 

operation primitives (e.g., aggregators) in terms of 
compute and memory efficiency.

❑ Traditional mini-batch training

Partition : 

Redundant 
nodes {3,5,6,7}

Redundancy Reduction:

Reduce the number of redundant node 

introduced by the partition of multi-level 

bipartite structure.

Redundancy-Embedded Graph (REG) Construction and Partition

edge weight = # of shared neighbors➢ In REG

➢ Dataset: Cora, Pubmed, Reddit, ogbn-arxiv and ogbn-products

➢

reduce the 
sampling rate

reduce the number of 
neighbors participating 
in aggregation

reduce 
memory 
consumption

K way partition

Full batch 
bipartite

K

micro-batch 
bipartite

For more details

output node u output node v

Overview

Cons: GNN training can still run out of memory as 
more advanced configuration, especially when using 

more memory intensive aggregators.

A transparent solution that does not require 

any hyperparameter tuning and preserve 
model convergence.

Open source

Betty introduces two novel techniques, redundancy-embedded graph (REG)

partitioning and memory-aware partitioning.

• Aggregator

• Number of model layers.

• We evaluate the scalability of GNN training,

• Hidden size

• Fanout

Reducing Maximal Memory Footprint

• Partition memory estimation• Memory-aware Partitioning.

reduce max memory consumption by 48.3% and 37.7% 

on average,

reduce the node redundancy by up to 49.2% and 28.4% 

on average.

improve computation efficiency by 20.6%, 21.1%, and 

22.9%, when the number of batches increases (number of 

redundant nodes increases).

and Tiered Memory

https://www.dgl.ai/
https://pytorch-geometric.readthedocs.io/

	Slide 1

