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1 Introduction
Graph neural network (GNN) has emerged as an effective
paradigm to learn rich relation and interaction information
in irregular graph-based structures. Recent efforts show that
GNN training efficiency or accuracy can be improved by us-
ing larger batch sizes [4, 5], training with more sophisticated
aggregators [9, 11], increasing aggregation depth [7], using
a larger sampling rate [15], or using deeper and wider neural
encoders [6]. However, despite leading to promising results,
the improvements often come at a cost of significantly in-
creased memory consumption. To work around the memory
capacity bottleneck, prior work explored both algorithmic
(sampling [8, 13, 16]) and system optimizations (DGL [12], Py-
Torch Geometric [1], and NeuGraph [10]). However, algorith-
mic method requires careful consideration of the sampling
strategy and may cause loss of important neighbor informa-
tion that hurts the final model accuracy. For system methods,
as the batch size or aggregation depth increases, especially
when using more memory-intensive aggregators, GNN train-
ing can still run out of memory. Frameworks such as DGL
also support distributed training for GNN (DistDGL [14]),
where they partition the graph across multiple GPUs and/or
multiple nodes, and leverage the aggregated memory from
multiple GPUs to scale out the GNN training. While being
an effective approach, these methods often increase the hard-
ware cost of training GNN models significantly.

To analyze the scalability bottleneck, we analyze the mem-
ory usage of a popular GNN network GraphSAGE [2] with a
large dataset obgn-products [3] on an NVIDIA RTX6000 GPU
with 24GB memory. Figure 1 shows that GNN scalability has
been severely limited by the GPU memory capacity. While
simple aggregators such as Mean and Pool incur <10GB
memory consumption, more advanced aggregators such as
LSTM are much more memory hungry and easily lead to
over 24GB of memory consumption and OOM error, making
training with these more advanced aggregators infeasible
on larger datasets. Similarly, as we increase the aggregation
depth, the memory consumption increases almost exponen-
tially and runs into OOM with deeper GNNs (e.g., running
OOM at the 4th-layer as in Figure 1.b). Furthermore, the
limited memory also prevents GNN from using wider hidden

Figure 1. The memory consumption of running GraphSAGE
on ogbn-products. (a) Comparison results between neighbor
aggregators. The number of SAGE layers is 2, the hidden size
is 256, and the fanout degree for the two layers is 10 and 25
respectively. (b) Comparison results varying the number of
SAGE layers. The aggregator is Mean and the hidden size
256. For the four layers of SAGE, the fanout degree is 10, 25,
30 and 40 respectively. (c) Comparison varying the hidden
size. Similar to the configuration in (b), but varying the hid-
den dimension sizes from 64 to 256. (d) Comparison results
varying fanout degree. The SAGE layer is 1, the hidden size
is 256 and the aggregator is LSTM.

size (Figure 1.c) and larger fanout degree for aggregation (Fig-
ure 1.d). As such, the memory capacity has become a severe
bottleneck for data scientists and practitioners to use more
advanced GNN training methods. As we show in Section 3,
Betty1 avoids OOM and enables those memory-consuming
cases.

Based on the analysis of GNN scalability bottlenecks, we
identify feature vectors and their corresponding hiddenmaps
involved in aggregation as a major source of memory con-
sumption for GNN training. To reduce the memory usage,
one effective method is via batch-level partitioning, where

1The full paper appears in ASPLOS’23 and can be found in
https://doi.org/10.1145/3575693.3575725
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Figure 2.Workflow of Betty.

a mini-batch is partitioned into 𝐾 micro-batches. In micro-
batches training, the loss and gradients are calculated after
each micro-batch. Instead of updating the model parameters
after each backpropagation, the training process waits and
accumulates the gradients over consecutive micro-batches,
and ultimately updates the parameters based on the accumu-
lated gradients from the entire full batch. With this simple
optimization, the GNN can be trained with a much lower
memory consumption while achieving same convergence
without any changes to hyper-parameters or optimizer.

Batch-level partitioning in GNN is complex due to intri-
cate dependencies. Unlike traditional deep learning with a
1:1 mapping between inputs and labels, GNNs have more
complex relationships (N:M). This complexity results in two
challenges: (1) High redundancy occurs as shared neighbors
are duplicated across micro-batches, creating inefficiency.
(2) Load imbalance arises when a few micro-batches, due to
partitioning strategies we selected, consume significantly
more memory, increasing the device’s maximum memory
footprint.
To address these issues, we propose a solution for GNN

batch-level partitioning. We use a multi-level bipartite graph
partitioning approach and introduce two key techniques. (1)
Betty creates a redundancy-embedded graph and simplify
the redundancy reduction problem. (2) Betty implements
a memory-aware partitioning method to reduce memory
usage effectively.
2 Overview
Betty reduces the memory consumption of GNN training via
the batch-level partitioning and using both CPU and GPU
memory to train advanced GNNs on single GPU. We for-
mulate the batch-level partitioning in GNN as a multi-level
bipartite graph partitioning problem and study how such
partitioning can be done while allowing the GNN training
to leverage accumulative gradients of the partitioned micro-
batches to achieve the same training results as the original
batch without the need of adjusting any hyperparameters
from model scientists.
While the batch-level partitioning reduces the memory

footprint, it introduces challenges of high redundancy across
partitioned micro-batches and load imbalance. We introduce
two novel techniques to mitigate the redundancy. First, con-
struct a redundancy-embedded graph (REG) and transform
the redundancy reduction problem to an equivalent min-flow

Figure 3. Betty addresses the memory capacity problem
presented in Figure 1.

cost cut problem, then solve it via a high performance min-
flow cut algorithm; Second, we use memory-aware graph
partitioning via accurate estimation of the memory usage of
GNN batches. This method allows Betty to quickly figure out
how many partitions a batch should be split to meet a mem-
ory capacity constraint. Figure 2 overviews the workflow of
using Betty.

3 Evaluation
We conduct extensive experiments on different sizes of graphs,
including a billion-scale graph to demonstrate how Betty
enables large-scale GNN training on single GPU without
suffering from out of memory (OOM) and losing accuracy.
Evaluating with GraphSAGE on the dataset ogbn-products,
Betty is able to run a sophisticated aggregator LSTM (Fig-
ure 1.a→ Figure 3.a) using nine micro-batches; (Figure 1.b
→ Figure 3.b) runs the GNNmodel with more layers (4 and 5
layers) using 3 and 60 micro-batches respectively; (Figure 1.c
→ Figure 3.c) runs the GNN model with larger hidden sizes
(256 and 512) using 3 and 32 micro-batches respectively; (Fig-
ure 1.d → Figure 3.d) increases fanout to 20 and 800 using 2
and 13 micro-batches respectively. Compared with a set of
other graph partition algorithms (Metis, range, and random),
Betty improves computation efficiency by 20.6%, 21.1%, and
22.9% respectively.
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