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1 INTRODUCTION
Byte-addressable persistent memory features high density, byte-
addressability, and data persistency, allowing software to access
durable data in main memory. Experiments in cloud services and
high-performance computing have demonstrated the potential of
persistent memory in building crash-resilient software, improving
software performance, and increasing development efficiency.

Programmers often use persistent memory transactions to achieve
crash consistency — transactions provide simple yet powerful se-
mantics of crash-atomic updates, i.e., they ensure either all or no
transactional updates on persistent memory locations are observ-
able after a crash.

Existing persistent memory transactions, however, incur large
overheads, because of the need to log data updates to provide trans-
actional semantics. For example, the most commonly used imple-
mentation, Intel PMDK, was reported to incur 6× slowdowns to
program executions. This crash consistency overhead must be sub-
stantially lowered before persistent memory becomes attractive for
wide adoption.

This important problem has been the focus of recent studies.
Some of the proposed solutions are specially designed for a certain
algorithm or a data structure, and are not applicable to general
applications. More general solutions include pure software meth-
ods [1] and hardware support [3] to mitigate the logging overhead.
Although these studies have made important contributions and
reduced the logging overheads by as much as 2.6×, crash consis-
tency overheads are still too large for practical use. As shown in
Figure 1, even after applying state-of-the-art software (SPHT [1]),
the programs in STAMP still suffer from an average of 50–161%
execution time overheads compared to versions without persistent
memory transactions.
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Figure 1: Overhead incurred by state-of-the-art software per-
sistent memory transactions.

In this work, we present speculative logging, a novel approach
to reduce crash consistency overheads. The design was motivated
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Figure 2: Timeline for two consecutive persistent transac-
tions. The undo logging transaction (left) records the old
value of a datum, using multiple fences in a transaction.
Speculative logging transaction (right) records the new value
of the memory location without fences. It persists all log
records but data with only one fence each transaction before
the transaction commits.

by the fact that the main sources of crash consistency overheads
in persistent transactions are the use of memory fences and the
persisting of data. The design builds upon the key insight that data
can be speculatively logged early, and doing so removes the sources
of performance overheads.

Figure 2 illustrates the basic idea of speculative logging. In a typ-
ical persistent transaction (Figure 2 left), a datum is (undo) logged
before being updated in the transaction. A flush and fence ensure
that the log write persists before the data write. In contrast, specu-
lative logging (Figure 2 right) moves up the logging to a point as
early as the last transaction where the datumwas updated. By doing
that, several benefits are achieved. First, the log write leverages
the commit of the first transaction to persist the log, forgoing the
need for memory fences for persisting the log. Second, it defers the
flush to the transaction commit, making the transaction execute
faster. Third, as the log persists the most recent value of the datum
once a transaction commits, the data write in the same transaction
becomes optional. If the data write fails to persist, the post-crash
recovery can rely on log records to rebuild the updated data. Thus,
the data write no longer requires a flush. Because persisting log



records involve sequential writes, they have better spatial local-
ity and are faster than persisting data writes (which may be more
random).

The work realizes the speculative logging transaction in both
software and hardware to demonstrates the potential applicability
and benefits of this concept. The software-only solution is com-
patible with existing hardware. It uses novel speculative log man-
agement featuring a compact log format and background memory
reclamation, and a crash recovery protocol based on the compact
log format. The proof-of-concept implementation of the solution
achieves about 2.7× speedup over the state-of-the-art in-place so-
lution Kamino-Tx [2]. However, two key drawbacks remain: (1)
memory space overheads, which is 3× persistent memory space,
and (2) the reliance on dedicated background memory reclamation
threads.

The hardware solution reduces memory space overheads while
preserving performance with a novel architecture for a hybrid log-
ging model. The model allows softwares to use speculative logging
for hot (i.e., frequently updated) data and undo logging for cold data.
By controlling the threshold of data hotness, the user can set an
arbitrary bound on the size of the speculative log area. The hybrid
logging model also enables a software-hardware co-designed log
reclamation scheme. The log reclamation runs in the foreground,
and therefore does not require dedicated reclamation threads. This
allows softwares to reclaim speculative log records with a few
instructions without blocking other running threads. By simply
clearing the bits associated with a given epoch with new instruc-
tions, the hardware can easily reclaim all the log records created in
the epoch.

Together, these solutions provide an alternative approach to
current undo logging–based persistent transactions, namely spec-
ulatively persistent memory transactions (SpecPMT). Comparisons
with state-of-the-art in-place update methods (Kamino-Tx [2] and
EDE [3]) show that SpecPMT reduces the execution time overheads
of the prior methods from 232% and 50% to 10% and 7%, respectively.

SpecPMT achieves all the desirable properties of a persistent
memory transaction while keeping transaction overheads low: (1) it
uses in-place data updates; (2) it eliminates fences between logging
and data updates; (3) it does not block transaction commit with
data persistence; (4) it supports a software-only or a lightweight
hardware implementation; and (5) it is data structure agnostic rather
than data structure specific.

2 SPECULATIVE LOGGING EXAMPLE
We illustrate speculative logging with a running example in Fig-
ure 3, which shows two transactions that both update memory
locations a and b (The example applies to both software and hard-
ware SpecPMT proposed in this paper.). The persistent memory
state for data and logs are shown for different snapshots in time.
The snapshots begin when the first transaction has just committed.
Here both locations have been updated, and speculative log records
for a and b have been created. As the second transaction executes
(second snapshot with b=10), it creates log records for a and b, and
appends them in the log. Note that at this point, if a crash occurs,
the first transaction log records are sufficient to restore data to the
point before the second transaction by undoing any changes to a
and b in the second transaction. Hence, new data values and the

associated log records in the second transaction may remain in the
volatile memory. When the second transaction commits (third snap-
shot), the commit ensures the new speculative log records persist
along with the transaction commit metadata. Note that updates
on locations (e.g., a) do not need to persist (e.g., be flushed) at this
point, as second transaction log records are sufficient to replay the
non-persisted data updates if a crash occurs (the speculative log
entries function as a redo log for the just committed transaction).
Finally, when log reclamation is triggered (last snapshot), explicitly
or implicitly, the reclamator finds that log records from the first
transaction are stale and thus can be removed. The first transaction
metadata is also removed since no fresh log record remains.
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Figure 3: A codelet and the memory state snapshots with
timeline, illustrating the mechanism of speculative logging

The post-crash recovery is straightforward, as described in the
full paper [4].

3 EVALUATION
The speculative logging approach removes most in-transaction
fences and data persistence, enforces immediate persistence, and
performs direct memory loads and in-place data updates. The
software-only design achieves a low 10% execution time transac-
tion overhead, compared to a state-of-the-art solution of 232%. The
hardware-supported design keeps the performance of the software-
only solution while bounding its memory consumption. Compared
to the state-of-the-art undo and redo logging, it lowers execution
time overheads by 86% and 76%, respectively, while requiring a
modest 0.91KB on-chip storage overhead.
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