
1

Analysis and Designs of Analog ECC
Anxiao (Andrew) Jiang, Senior Member, IEEE and Xiangwu Zuo

Abstract—Nonvolatile resistive memories (e.g., memristors and
phase-change memories) have become an important part of neu-
romorphic computing. In particular, crossbars of such nanoscale
memories have been essential for realizing vector-matrix multi-
plications in analog circuits, which are widely used operations
in deep neural networks. Analog error-correcting codes (Analog
ECCs) have been proposed to make the operations more reliable.

This paper explores the analysis and constructions of Ana-
log ECCs in multiple ways. It presents a linear-programming
based algorithm that computes the m-heights of Analog ECCs
efficiently, which can be used to determine the error correc-
tion/detection capabilities of the codes. It presents a family of
Analog ECCs based on permutations, and proves that the time
complexity for determining the m-heights of such codes can be
further reduced substantially. It then presents a number of newly
discovered codes, which achieve state-of-the-art performance.

I. INTRODUCTION

Nonvolatile memories (NVMs) have become essential for
implementing deep neural networks (DNNs) in analog circuits
through in-memory computing. In recent years, DNNs have
been realized in analog chips based on resistive NVMs, includ-
ing phase-change memories (PCMs) and memristors [1], [5].
Such DNNs can run with substantially higher speed and power
efficiency compared to digital circuits. The improvements
are largely due to the efficient realization of vector-matrix
multiplications, which are widely used operations in DNNs,
in the crossbar architecture of NVMs cells. The challenge,
however, is that the computing can be less reliable than its
digital counterpart due to the various noise mechanisms in
NVM cells and analog circuits. To make the vector-matrix
multiplication more reliable, Analog error-correcting codes
(Analog ECC) has been proposed recently [4].

Let C be a linear [n, k] Analog ECC over R. Let c =
(c0, c1, · · · , cn−1) ∈ Rn denote a generic codeword in C.
There are two types of additive errors that can be added
to a codeword by the channel: a type of limited-magnitude
errors (LMEs), and a type of unlimited-magnitude errors
(UMEs), defined as follows. Let [n⟩ denote the integer set
{0, 1, · · · , n−1}. Let δ and ∆ be two positive real thresholds,
where ∆ > δ > 0. An error vector ε= (ε0, ε1, · · · , εn−1) ∈
Rn is called a limited-magnitude error vector (i.e., LME
vector) if εi ∈ [−δ, δ] for all i ∈ [n⟩. Given a vector e =
(e0, e1, · · · , en−1) ∈ Rn, define its support with respective
to ∆ as Supp∆(e) = {i ∈ [n⟩ : |ei| > ∆}. The above
definition can be extended to ∆ = 0. Then by this definition,
the ordinary support of e is Supp0(e). And the Hamming
weight of e, denoted by wH(e), is |Supp0(e)|. An error vector
e = (e0, e1, · · · , en−1) ∈ Rn is called an unlimited-magnitude

A. Jiang and X. Zuo are with the Department of Computer Science and
Engineering, Texas A&M University, College Station, TX, 77845 USA. E-
mail: ajiang@cse.tamu.edu and dkflame@tamu.edu. A full version of this
paper is under review by IEEE Transactions on Information Theory.

error vector (i.e., UME vector) of Hamming weight w if
wH(e) = w. A noisy codeword y = (y0, y1, · · · , yn−1) ∈ Rn
is the sum of the codeword c ∈ C and the two error vectors ε
and e, namely, y = c+ε+e.

DNNs often naturally have some tolerance of small noise
(e.g, limited-magnitude errors) in the data they use, including
noise in their intermediate computational results [2]. So we
may consider LMEs as tolerable (as long as δ is small), and
focus on the detection and correction of the UMEs, espe-
cially those UMEs whose magnitudes exceed the threshold
∆. For the NVM crossbar that implements the vector-matrix
multiplication, the LMEs can be due to random noise in the
NVM cell levels and circuits, while the UMEs can be due to
more significant events such as stuck cells or short cells in the
crossbar architecture. For more details on the implementation
and its performance, please refer to [3] [4].

Given the above considerations, the decoding objective of
Analog ECC is set as follows. The decoder for a linear [n, k]
Analog ECC C is a function D : Rn → 2[n⟩ that returns a set of
locations of UMEs. Let δ, ∆ ∈ R+ be positive thresholds with
δ < ∆ as mentioned earlier, and let t be a nonnegative integer.
We say that “the decoder D corrects t UMEs (with respect to
the threshold pair (δ,∆))” if for every possible vector y =
c+ε+e with c ∈ C being a codeword, ε being an LME vector
and e being an UME vector whose Hamming weight wH(e)
is at most t, we have Supp∆(e) ⊆ D(y) ⊆ Supp0(e).

In spite of the importance of Analog ECCs for machine
learning, the designs of such codes are still relatively limited.
Most existing codes focus on the correction or detection of
only one UME [4]. In this work, we develop an efficient
algorithm that finds the error-correction capabilities of Analog
ECCs (specifically, a quantity called m-height, which is analo-
gous to minimum distance for conventional ECCs). We present
and analyze a new family of codes called Analog Permutation
Codes that enables more efficient computing of the m-heights.
We also use genetic programming to search for new codes, and
present a set of codes with state-of-the-art performance.

II. MAIN RESULTS

The m-height of a linear [n, k] Analog ECC C is defined as
follows [4]. Let x = (x0, x1, · · · , xn−1) ̸= (0, 0, · · · , 0) be a
vector in Rn. Let π : [n⟩ → [n⟩ be a permutation such that
|xπ(0)| ≥ |xπ(1)| ≥ · · · ≥ |xπ(n−1)|. For any m ∈ [n⟩, the
m-height of x is defined as hm(x) =

∣∣∣ xπ(0)

xπ(m)

∣∣∣ if xπ(m) ̸= 0,
and as hm(x) = ∞ if xπ(m) = 0 . For the all-zero vector
0 = (0, 0, · · · , 0), its m-height is defined as hm(0) = 0 for
all m. Then, the m-height of a linear [n, k] code C over R is
defined as hm(C) = maxc∈C hm(c). The next important result
was proven in [4].

2

Theorem 1. Let C be a linear [n, k] code. Given δ, ∆ ∈ R+

with δ < ∆ and t ∈ Z+, there exists a decoder for C that
corrects t UMEs if and only if ∆/δ ≥ 2(h2t(C) + 1).

It is, however, challenging to compute the m-height of an
Analog ECC in general. (The analogous minimum distance
problem for conventional ECC is usually NP-hard.) We can
show that given the generator matrix G, the m-height of C
can be found through a baseline algorithm that solves n! · 2n
linear-fractional programs with k variables. We further prove
that there is a more efficient algorithm (shown in Theorem 2).

Let m ∈ [n⟩ − {0}. Let Ψ = {−1, 1}m. Let (a, b,X, ψ)
be a tuple where a ∈ [n⟩, b ∈ [n⟩ − {a}, X ⊆ [n⟩ − {a, b},
|X| = m− 1, and ψ = (s0, s1, · · · , sm−1) ∈ Ψ. Let Γ denote
the set of all the n(n− 1)

(
n−2
m−1

)
2m such tuples.

Given a tuple (a, b,X, ψ) ∈ Γ, let x1, x2, · · · , xm−1 denote
the m − 1 integers in X such that x1 < x2 < · · · < xm−1.
Define Y ≜ [n⟩−X −{a, b}, and let xm+1, xm+2, · · · , xn−1

denote the n−m−1 integers in Y such that xm+1 < xm+2 <
· · · < xn−1. Let x0 = a and xm = b. Then x0, x1, · · · , xn−1

are the n distinct integers in [n⟩. Let τ denote the permutation
on [n⟩ such that τ(j) = xj for j ∈ [n⟩. We call τ the quasi-
sorted permutation given (a, b,X, ψ).

Theorem 2. Let C be a linear [n, k] code over R. Let
G = (gi,j)k×n ∈ Rk×n be a generator matrix of C where
no column is 0. Let d(C) be the minimum distance of C, and
let m ∈ {1, 2, · · · ,min{d(C), n − 1}}. Let (a, b,X, ψ) ∈ Γ,
where ψ = (s0, s1, · · · , sm−1). Define Y ≜ [n⟩ −X −{a, b},
and let τ be the quasi-sorted permutation given (a, b,X, ψ).
Let LPa,b,X,ψ denote the following linear program with k real-
valued variables u0, u1, · · · , uk−1: Maximize

∑
i∈[k⟩(s0gi,a)·

ui such that (1)
∑
i∈[k⟩(sτ−1(j)gi,j − s0gi,a) · ui ≤ 0 for

j ∈ X; (2)
∑
i∈[k⟩(−sτ−1(j)gi,j) · ui ≤ −1 for j ∈ X; (3)∑

i∈[k⟩ gi,b · ui = 1; (4)
∑
i∈[k⟩ gi,j · ui ≤ 1 for j ∈ Y ; (5)∑

i∈[k⟩ −gi,j ·ui ≤ 1 for j ∈ Y . Let za,b,X,ψ be the optimal ob-
jective value of LPa,b,X,ψ if it is feasible, and let za,b,X,ψ = 0
otherwise. Then hm(C) = max(a,b,X,ψ)∈Γ za,b,X,ψ .

Theorem 2 shows how to computes the m-height by solving
n(n − 1)

(
n−2
m−1

)
2m linear programs, which reduces the com-

plexity by a factor of (m−1)! · (n−m−1)! ·2n−m compared
to the baseline method. Since 1 = h0(C) ≤ h1(C) ≤ · · · ≤
hn−1(C) and hd(C)(C) = ∞, it also shows a way to find d(C):
compute the m-height for m = 1, 2, 3 · · · until it becomes ∞.

To further reduce the complexity of computing m-heights,
we study codes with special structures. When n = k!, let G
be a k × n matrix whose columns are distinct permutations
of each other. We call a code with G as its generator matrix
an Analog Permutation Code (APC). The next theorem shows
that the time complexity of computing its m-height is lower
than that of Theorem 2 by a factor of n. (There are other code
constructions with special structures, such as codes concate-
nated with repetition codes, for which the time complexity can
also be reduced. Due to space limitation we skip their details.)

Theorem 3. Let C be a linear [n, k] APC. Let za,b,X,ψ be as
defined in Theorem 2. Then hm(C) = max(0,b,X,ψ)∈Γ z0,b,X,ψ .

The algorithms for computing the m-heights of Analog

ECCs enable us to construct new codes through computer
search and optimization. We search for new codes based on
Genetic Programming, where codes with random generator
matrices (e.g., using Gaussian distributions for their elements),
random Analog Permutation Codes and their punctured codes
are used as the initial population. A summary of the results
are shown in Table I. The table lists the m-heights of different
linear [n, k] Analog ECCs with state-of-the-art performance.
Here the m-heights in the black color are of known codes
from [4], and the m-heights of the blue color are of the
new codes presented here. Notice that when m ≥ 4, codes
with finite m-heights can correct two or more UMEs; and the
smaller the m-height is, the smaller the ratio ∆/δ (where ∆
and δ are the two threshold values for UMEs and LMEs as
described earlier) needs to be. Many of the new codes here
can correct two or more errors. Some of them have finite m-
heights for m as large as 8 (e.g., the [10, 2] code in the table),
which means they can correct up to 4 UMEs. We also note
that nine of the new codes here are Analog Permutation Codes
or their punctured codes.

hm(C) [n, k] [n, k] [n, k] [n, k] [n, k] [n, k] [n, k]
[5, 2] [6, 2] [6, 3] [7,2] [7,3] [7,4] [8,2]

m = 1 1 1 1 1 1 2 1
m = 2 1.83 1 2.87 1 2 3.15 1
m = 3 3.25 2.28 7 1.90 3 12.56 1
m = 4 —- 4.10 —- 2.78 10.14 —- 2.88
m = 5 —- —- —- 4.95 —- —- 3.79
m = 6 —- —- —- —- —- —- 7.16

hm(C) [n, k] [n, k] [n, k] [n, k] [n, k] [n, k] [n, k]
[8,3] [8,4] [8,5] [9,2] [9,3] [9,4] [9,5]

m = 1 1 1 2 1 1 1 2
m = 2 2.49 3 7.18 1 1 3.38 4
m = 3 3.71 3 22.48 1 3.05 5.42 12.51
m = 4 9.01 20.96 —- 1.92 5.76 12.32 76.49
m = 5 20.37 —- —- 3.32 12.71 99.90 —-
m = 6 —- —- —- 3.88 29.92 —- —-
m = 7 —- —- —- 12.76 —- —- —-

hm(C) [n, k] [n, k] [n, k] [n, k] [n, k] [n, k]
[9,6] [10,2] [10,3] [10,4] [10,5] [10,6]

m = 1 2 1 1 1 1 2
m = 2 8.56 1 1 ≤ 3 4.23 4
m = 3 48.72 1 2.12 5.00 8.90 23.06
m = 4 —- 1 4.36 7.22 29.80 273.24
m = 5 —- 1.92 5.97 21.56 334.75 —-
m = 6 —- 3.88 17.18 300.92 —- —-
m = 7 —- 3.88 69.44 —- —- —-
m = 8 —- 28.74 —- —- —- —-

TABLE I
THE m-HEIGHTS OF DIFFERENT LINEAR [n, k] ANALOG ECCS

REFERENCES

[1] M. Le Gallo et al., “A 64-core Mixed-signal In-memory Compute Chip
Based on Phase-change Memory for Deep Neural Network Inference,” in
Nature Electronics, vol. 6, pp. 680-693, 2023.

[2] K. Huang, P. H. Siegel and A. Jiang, “Functional Error Correction
for Robust Neural Networks,” in IEEE Journal on Selected Areas in
Information Theory (JSAIT), vol. 1, no. 1, pp. 267-276, 2020.

[3] C. Li, R. M. Roth, C. Graves, X. Sheng and J. P. Strachan, “Analog Error
Correcting Codes for Defect Tolerant Matrix Multiplication in Crossbars,”
in Proc. IEEE International Electron Devices Meeting (IEDM), 2020.

[4] R. M. Roth, “Analog Error-Correcting Codes,” in IEEE Transactions on
Information Theory, vol. 66, no. 7, pp. 4075-4088, July 2020.

[5] W. Zhang et al., “Edge Learning Using a Fully Integrated Neuro-inspired
Memristor Chip,” in Science, vol. 381, no. 6663, pp. 1205-1211, 2023.

