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1 Introduction
Suppose an application is dependent on some value in mem-
ory 𝑥 at address 𝑎. Will the value of 𝑥 ever be in a state other
than what the application expects it to be in? As it turns
out, traditional systems with volatile memory are subject
to active and passive attacks where data in memory can be
selectively and precisely be targeted and corrupted to poten-
tially malicious values. These attacks can be performed by
legitimate guest software on the system that doesn’t need
to have access permissions to sensitive data, so defenses in
software are insufficient.
Such is the motivation for secure memory. Secure mem-

ory describes hardware-enforced integrity protection and
privacy of all data in sensitive memory devices (i.e., off-chip
DRAM, etc). Generally, confidentiality is achieved by en-
crypting values as they pass from trusted to untrusted stor-
age hardware via counter-mode encryption and the integrity
of data is protected by a Bonsai Merkle Tree (BMT) with
a keyed hash message authentication code (HMAC) [2, 3].
The BMT is a tree of hashes where the root resides in the
trusted hardware (i.e., on-chip) to ensure that values and
hashes in memory cannot be replayed. To fetch a value from
an untrusted storage device, the hardware also needs to fetch
its associated encryption counter to perform decryption as
well as its path through the BMT and its HMAC to compare
the computed hashes against the trusted root. If the com-
puted hashes match the stored hashes, then the hardware can
guarantee that the value in memory hasn’t been tampered.
While such a scheme successfully protects the confiden-

tiality of data in memory, it comes at steep performance
cost. What was once a single fetch to retrieve some data now
results in several fetches to retrieve both data and secure
memory metadata. This is typically optimized by including
a volatile cache that is reserved for secure memory meta-
data, but the emergence of non-volatile memories (NVMs),
provides even further challenges to secure memory in that
secure memory metadata (i.e., encryption counters, BMT
nodes, and HMACs) need to be crash consistent with applica-
tion data in NVM. To provide crash consistency, the secure
memory protocol could persist all values that are written
to the metadata cache directly to memory. In doing so, the
caching policy can be referred to as a write-through cache, as
opposed to its typical writeback nature. This scheme, termed

strict metadata persistence, is crash consistent because each
metadata value is persisted directly and atomically, so all
values in memory are in a crash consistent state at all times.
However, this scheme is not realistic, in that it can lead to
steep performance overheads (up to 25𝑋 ) at runtime.
An alternative approach, dubbed leaf metadata persis-

tence [4], addresses the performance issue by taking a lazy
approach to crash consistency. The tree nodes are written to
the volatile metadata cache and only written back to memory
on eviction (i.e., they are not written-through directly). After
a crash, at system recovery, each of the inner nodes of the
integrity tree are recomputed from the hashes of its leaves. If
the computed tree root matches the stored tree root, then the
system can be safely rebooted. These two extreme baselines
describe an inherent trade-off between runtime performance
overhead and recovery time, with an additional axis in the
solution space on hardware cost.
In this paper, we propose a hybrid, adaptable metadata

persistence scheme for secure NVMs in which a single, small
subtree of the underlying BMT implements leaf metadata
persistence, whereas most of memory is protected by strict
metadata persistence. In doing so, our proposed protocol
implements an adaptable crash consistency policy, which
adapts to changing application behavior with minimal hard-
ware cost. Such a solution ensures that our protocol scales
with changing workload demands and as on-chip architec-
tures continue to develop and change.

2 Design
We propose a secure NVM protocol in which there is a single
fast subtree that balances a reasonable runtime overheadwith
controllable recovery times and minimal hardware overhead.
In particular, we achieve this goals by using a dynamic hybrid
persistence strategies within the same BMT.
We work from the assumption that a small number of

contiguous addresses in physical memory are frequently ac-
cessed (i.e., “hot”). Given this, our proposed protocol protects
a small region of physical memory with a fast persistence
protocol while most addresses are persisted strictly to keep
the work required at recovery time low. In our fast subtree
protocol, there is a dynamic persistence protocol that tracks
hot regions of physical memory, which is the hottest sub-
tree of the underlying BMT in order to adapt to changing
in-memory hotness at runtime. We use an additional register
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Figure 1. Proposed architecture. Red nodes implement strict
persistence. Blue nodes implement leaf persistence.

on-chip to track this subtree. The subtree implements a leaf
persistence strategy, where tree nodes assumed to be stale
at the time of a system failure (blue nodes in Fig. 1). The
rest of the BMT implements strict persistence to minimize
recovery time after a crash (red nodes in Fig. 1). Implement-
ing a strict persistence strategy in the region outside of the
subtree, while slow at runtime, will not occur often, thereby
minimizing impact on overall performance and reduces the
work required at recovery time.

As application behavior changes, our protocol adapts the
leaf persistence region to the new hot region. When tran-
sitioning from subtree 𝑇 to 𝑇 ′, all inner integrity nodes of
𝑇 must be persisted before 𝑇 ′ can implement the leaf per-
sistence protocol in order to preserve the crash consistency
and security guarantees. Note that the only ancestral paths
from subtree 𝑇 that need to be written to memory are those
originating from modified (dirty) data, so we can quickly
determine which nodes these are by scanning the dirty bits
in the metadata cache. Only nodes in the metadata cache that
fall within the subtree will have their dirty bits set as all other
metadata are written-through to memory. The path from 𝑇

to the root also must always be persisted on movement.
But how safe is it to assume that applications use only a

small contiguous region of physical addresses? If multiple
programs are mapped to distinct virtual address spaces, it
is highly unlikely that they will exhibit in memory physi-
cal locality. One possible solution would be to have a per-
core fast subtree, but this incurs memory complexity that is
scalably worse for many-core devices. Instead, we propose
hardware-software co-design to keep hardware complexity
low and modify application behavior from the operating sys-
tem’s memory management unit to increase the in-memory
subtree locality. In particular, we modify the physical page
reclamation process to traverse the free_area structs for the
subtree with the most free pages, and re-organize the list to
put those free pages at the head. In Linux, pages allocated by
fetching the head elements from the lists in the free_area
structs, so our modified operating system increases the likeli-
hood that consecutive allocations will occur within the same
subtree region. Seeing as this is consistent for all processes,
putting this modification in the OS keeps it agnostic to which
process is requesting the physical memory.
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Figure 2. Cycles to execute region of interest of PARSEC
benchmarks normalized to volatile secure memory.

3 Evaluation and Conclusion
We evaluate our fast subtree protocol on the PARSEC bench-
mark suite version 3.0 with the simlarge inputs in gem5,
a cycle accurate architecture simulator. We configure our
8GB memory to have 305ns read latency and 391ns write
latency, and we configure the secure memory hardware to
have a 64kB metadata cache with an 8 level BMT to remain
consistent with Intel SGX.

Fig. 2 shows the number of cycles executed for each hard-
ware configuration normalized to volatile secure memory, so
lower is better. In this evaluation leaf refers to the leaf meta-
data persistence policy, strict refers to the strict metadata
persistence policy, anubis and bmf refer to our implemen-
tation of prior arts [5] and [1], respectively, both requiring
substantially higher hardware space. fst portrays our pro-
posed “fast subtree” protocol without the modified operating
system, and fst++ portrays our protocol with the modified
operating system. These benchmarks demonstrate a wide
range of CPU workloads. Our results demonstrate that our
approach consistently provides performance similar to that
of leaf persistence, while offering the recovery benefits of
strict persistence for most addresses.
In summary, the fast subtree protocol uses hot region

tracking to create an adaptable crash consistency protocol
for secure NVMs.
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