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1. Introduction
Crash consistency using persistent memory programming
libraries requires programmers to use complex transac-
tions and manual annotations. In contrast, the failure-
atomic msync() [10] (FAMS) interface is much simpler
as it transparently tracks updates and guarantees that modi-
fied data is atomically durable on call to the failure-atomic
variant of msync(). However, FAMS suffers from sev-
eral drawbacks, like the overhead of the msync() system
call and the write amplification from page-level dirty data
tracking.

To address these drawbacks while preserving the ad-
vantages of FAMS, we propose Snapshot, an efficient
userspace implementation of FAMS. Snapshot uses novel,
compiler-based instrumentation to transparently track up-
dates in userspace and syncs them with the backing per-
sistent memory copy on a call to msync(). By keep-
ing a copy in DRAM, Snapshot improves access latency.
Moreover, with automatic tracking and syncing changes
only on a call to msync(), Snapshot provides crash-
consistency guarantees, unlike the POSIX msync() sys-
tem call.

For a KV-Store backed by Intel Optane running the
YCSB benchmark, Snapshot achieves at least 1.2×
speedup over PMDK while significantly outperforming
non-crash-consistent msync(). On an emulated CXL
memory semantic SSD, Snapshot significantly outper-
forms PMDK by up to 10.9× on all but one YCSB work-
load, where PMDK is 1.2× faster than Snapshot. Fur-
ther, Kyoto Cabinet commits perform up to 8.0× faster
with Snapshot than its built-in, msync()-based crash-
consistency mechanism on Intel Optane DC-PMM.

2. Background and Motivation
Recent memory technologies like CXL-based memory
semantic SSDs [3], NV-DIMMs [11], Intel Optane DC-
PMM [6], and embedded non-volatile memories [5] have
enabled byte-level, non-volatile storage devices. How-
ever, achieving crash consistency on these memory tech-
nologies often requires complex programming interfaces.
Programmers must atomically update persistent data us-
ing failure-atomic transactions and carefully annotated
LOAD and STORE operations, significantly increasing pro-
gramming complexity [8, 9, 7].

The msync() system call offers a simpler interface for
durability. The programmer maps a file from persistent
media into virtual memory and calls msync() to make
any changes durable.

The msync() interface, however, makes no crash-
consistency guarantees. The OS is free to evict dirty
pages from the page cache before the application calls
msync(). A common workaround to this problem is to
implement a write-ahead-log [1, 4] (WAL) which allows
recovery from an inconsistent state after a failure. How-
ever, crash consistency with WAL requires an application
to call multiple msync()s to ensure the data is always
recoverable after a crash.

Park et al. [10] overcome this limitation by enabling
failure-atomicity for the msync() system call. Their im-
plementation, FAMS (failure atomic msync()), holds off
updates to the backing media until the application calls
msync() and then leverages filesystem journaling to ap-
ply them atomically. FAMS is implemented within the
kernel and relies on the OS to track dirty data in the page
cache.

OS-based implementation, however, suffers from sev-
eral limitations:
(a) Write-amplification on msync(): The OS tracks dirty
data at the page granularity, requiring a full page write-
back even for a single-byte update, wasting memory band-
width on byte-addressable persistent devices. Using
2 MiB huge pages to reduce TLB pressure exacerbates
this problem.
(b) Dirty page tracking overhead: FAMS relies on the
page table to track dirty pages, thus every msync() re-
quires an expensive page table scan to find dirty pages
to write to the backing media. Moreover, since the OS
is responsible for maintaining TLB coherency, the ker-
nel must perform a TLB flush after clearing the access
and dirty bits [2], adding significant overhead to every
msync() call.
(c) Context switch overheads: Implementing crash con-
sistency in the kernel (e.g., FAMS) adds context switch
overhead to every msync() call, compounding the already
high overhead of tracking dirty pages in current imple-
mentations.

3. Snapshot

We address the shortcomings of FAMS with Snapshot,
a drop-in, userspace implementation of failure atomic
msync(). Snapshot transparently logs updates to
memory-mapped files using compiler-generated instru-
mentation, implementing fast, fine-grained crash consis-
tency. Snapshot tracks all updates in userspace and does
not require switching to the kernel to update the backing
media.
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Figure 1: Snapshot compilation process.

Figure 1 shows the overview of Snapshot’s compilation
and runtime. Snapshot works by logging STOREs trans-
parently ( 1 ) and makes updates durable on the next call
to msync(). During runtime ( 2 ), the function checks
whether the store is to a persistent file and logs the data
in an undo log.

Snapshot’s ability to automatically track modified data
allows applications to be crash-consistent using msync()

without significant programmer effort. For example, Snap-
shot’s automatic logging enables crash consistency for
volatile data structures, like shared-memory allocators,
with low-performance overhead.

Snapshot makes the following key contributions:
(a) Low overhead dirty data tracking for msync().

Snapshot provides fast, userspace-based dirty data track-
ing and avoids write-amplification of the traditional
msync().

(b) Accelerating applications on byte-addressable
storage devices. Snapshot allows porting existing
msync()-based crash-consistent applications to persis-
tent, byte-addressable storage devices with little effort
(e.g., disabling WAL-based logging) and achieves signifi-
cant speedup.

(c) Implementation space exploration for fast write-
back. We perform a detailed study on the performance of
NT-stores, clwb, and sfence and their interactions with
each other. We use the results to tune Snapshot’s imple-
mentation and achieve better performance. These results
are general and can help accelerate other crash-consistent
applications.

4. Results

We compared Snapshot’s performance against PMDK and
conventional msync() (as FAMS is not open-sourced)
using Intel Optane DC-PMM and emulated memory se-
mantic SSDs. We emulate memory semantic SSDs with a
large DRAM cache backed by a block device using a two-
socket server with one socket running the workload and
the other socket running the cache using shared memory
and an SSD as a block device.

On Intel’s Optane DC-PMM, for b-tree insert and
delete workloads, Snapshot performs as well as PMDK
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Figure 2: Performance comparison of commit frequency
for writes in Kyoto Cabinet. Lower is better.

and outperforms it on the read workload by 4.1×.
Moreover, Snapshot outperforms non-crash-consistent
msync() based implementation by 2.8× with 4 KiB page
size and 463.8× with 2 MiB page size for inserts. For
KV-Store, Snapshot outperforms PMDK by up to 2.2×
on Intel Optane and up to 10.9× on emulated memory
semantic SSD.

Finally, Snapshot performs as fast as and up to 8.0×
faster than Kyoto Cabinet’s custom crash-consistency im-
plementation (Figure 2).

5. Conclusion
Snapshot provides a userspace implementation of failure
atomic msync() (FAMS) that overcomes its performance
limitation. Snapshot’s sub-page granularity dirty data
tracking based crash-consistency out-performs both per-
page tracking of msync() and manual annotation-based
transactions of PMDK across several workloads.
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