
Optimizations of Linux Software RAID System for
Next-Generation Storage

Shushu Yi1, Yanning Yang2, Yunxiao Tang1, Zixuan Zhou1, Junzhe Li1, Chen Yue2

Myoungsoo Jung3, Jie Zhang1

Computer Hardware and System Evolution Laboratory
Peking University1, Beijing University of Posts and Telecommunications2

Korea Advanced Institute of Science and Technology (KAIST)3

I. INTRODUCTION

Redundant Array of Inexpensive Disks (RAID) has been widely
adopted to enhance the performance, capacity, and reliability of the
SSD array. However, as SSD has experienced significant technology
shifts, the RAID engine is becoming the performance bottleneck of
the future storage system that employs the next-generation SSDs.
Linux software RAID, referred to as mdraid [2], can break the
performance bound by employing multiple CPU threads to prepare
the parity data simultaneously. However, this approach can impose
significant software overheads, which in turn introduces a huge
burden to the CPU. Consequently, the performance of mdraid, un-
fortunately, cannot scale as the number of CPU threads and SSD
devices increase [3]. Our evaluation results reveal that the overheads
of the lock mechanism account for 30.8% of the total delays in mdraid
storage stack. One may consider removing the lock mechanism from
the mdraid. However, the locks play a critical role in guaranteeing
crash consistency and taking charge of data management.

To address this, we propose ScalaRAID, which refines the role
domain of locks and designs a new data structure to prevent dif-
ferent threads from preempting the RAID resources. By doing so,
ScalaRAID can maximize the thread-level parallelism and reduce the
time consumption of I/O request handling. Our evaluation results
reveal that ScalaRAID can improve throughput by 89.4% while
decreasing 99.99th percentile latency by 85.4% compared to mdraid.

II. BACKGROUND AND MOTIVATION

Software RAID in Linux kernel. Figure 1 shows the write path
of RAID 5 in the mdraid layer. The minimum data unit for RAID
operations is stripe unit (S-Unit), whose typical size is 4 KB. S-
Units of the same address offset in all member disks are grouped
as stripe head (S-Head), which are managed by Stripe data structure
in mdraid. Stripe records the states of S-Head (e.g., read waiting
and computation completed). The write procedure in mdraid can
be described as follows. When a write request arrives in mdraid,
it will firstly be sliced into S-Units (1). Next, to prepare for data
processing, S-Units of the same offset then request for a Stripe via
get active stripe function (2). If the number of S-Units in a Stripe
does not equal to the length of an S-Head, a read request will be
sent to the underlying block device for the missing S-Unit (3a).
Afterward, the CPU threads calculate the parity codes (3b). Once
the calculation completes, the S-Head will be sent to the storage
device (4a) and finally the Stripe will be recycled (4b). To prevent
multiple threads from competing for the same Stripe, Linux uses few
global locks to guarantee the exclusive allocation of the Stripes.
Write hole. When a power failure occurs in the process of chunk
write, the chunk being written to the storage becomes an uncertain
value. During system reboot, mdraid is unable to locate and fix
the write faults, which shatters the fault tolerance of RAID. This
phenomenon is referred to as write hole [1]. To address this issue,
mdraid employs a bitmap mechanism. In detail, a group of S-Heads
are clustered as stripe block (S-Block). An S-Block typically covers
address range of 64 MB on each disk. mdraid maintains a table of
counters, each mapping to a specific S-Block. The counter records the
number of S-Heads in an S-Block that are being written. This table
will be flushed back to the member disks in batches by a daemon
process and stored as a bitmap. During the recovery procedure,
we can scan the bitmap to figure out which S-Block should be

����

������

�	
��	

�����

����

���
��
����
������

� � �

� � ���

� ! "��

�

�

�

!

�

"

����

���
�#�

$�%��

	
�&�

'�&���

��

�����

(�����
���

)��	

��
�����*��

+������

��
���

)�������

��
���

��,���

��

��
���

��'�� ��'�� ��'��

!�

�

�,

!,

�

��
*���

�����

-��
�

�����

����	
��

%���
��

����

��
���

��
���

Fig. 1: Write path of RAID 5 in mdraid layer.

52
41

52
40

52
40

52
43

52
3624

15

33
45 50

53

51
69

52
18

3 5 9 17 33
0

1k
2k
3k
4k
5k
6k
7k

The number of CPU threadsBa
nd

w
id

th
 (M

B/
s) Single SSD 2+1 SSDs

(a) Bandwidth of sequence write.

3 5 9 17 33
0%
10%
20%
30%
40%

O
ve
rh
ea

ds

The number of CPU threads

 Submit bio Mem copy XOR
 Stripe lock Counter lock

(b) Overhead breakdown.
Fig. 2: Performance and overhead analysis of mdraid.

recalculated to synchronize data and parity. mdraid employs a single
global lock to avoid the competition in counter updates.
Motivation. To better understand the performance of mdraid, we
take an experiment on the real PCIe 4.0 SSD arrays. Figure 2a
shows the write throughput of RAID that consists of three SSDs. We
vary the CPU threads from 3 to 33. The write bandwidth of RAID
increases as we put more CPU threads for computation. However, it
cannot exceed the bandwidth of a single SSD. We further analyze
the CPU cost of mdraid with different numbers of threads, which is
shown in Figure 2b. We categorize the cost into Counter lock,
Stripe lock, Submit bio, Mem copy, and XOR. Counter
lock and Stripe lock represent for the time consumed by the
lock procedure of counters and Stripes, respectively. Mem copy and
Submit bio are the time of bio preparation and submission to
drivers. XOR is the time of parity computation. The overhead of the
lock mechanisms (including Counter lock and Stripe lock)
only accounts for 3.5% of the total I/O access time when employing 3
CPU threads. Nevertheless, it reaches 30.8% when using 33 threads.

III. SCALARAID DESIGN

Fine-grained locks. mdraid introduces a rudimentary lock mecha-
nism to prevent multiple CPU threads from preempting the Stripe
allocation, which imposes huge CPU overhead. Figure 3a shows our
solution to resolve the lock issues. We increase the number of Stripe
locks and interleave CPU threads to access different Stripe locks
by leveraging a hash algorithm. Our design allows different threads
(cf. T1 and T2 in Figure 3a) to run in parallel and improves the
overall RAID throughput while reducing request completion time in
a write burst by omitting the collision penalty. Once a Stripe has been

��

��

�� ��

��

��

��

��

��

��

��

��

��

�����	
�
�		

���	
�
�		

����

��
��� ��
���

����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������

��

��

��
��
� ��
�

�

��
��� ��
���

(a) Optimization of Stripe lock.

��

��
��������

�	

��
����
�����

�� �	 ��

��

��
��������

�	

��
����
�����

��

�	
��

��

	�

��

��

	�

��

��

���	

	��	

��

��

�������
��������
��������

(b) Optimization of counter lock.

��������

�������	

�������

��	

�	

�	

��

�

�

�

�	 ��

�	

��

�
�����

������
�

�
���������
� ��

����

���

���

������������ !�������!�����

�������

�������

��������

(c) Optimization of D-Block.
Fig. 3: Design details of ScalaRAID.

successfully acquired, the CPU thread continues to update the values
in the counter table. As mdraid employs only a single spin lock to
manage all the accesses to the counter table, all the CPU threads
should be serialized in front of the counter table. As shown in Figure
3b, when both CPU threads T1 and T2 need to modify the counter
table, they compete for the spin lock. T2 has to wait until T1 finishes
its access (1a and 1b) and releases the lock. To address this issue, we
split the counter table into multiple segments and assign a dedicated
lock to each segment. The counters in the counter table, which map
to neighboring S-Blocks, are interleaved across different segments.
Thus, CPU threads that target different segments can acquire the
locks simultaneously, thereby improving the thread-level parallelism.
For example, in Figure 3b, T1 and T2 can acquire different counter
locks and update the counters in parallel. Note that the counter lock
is also used to protect the metadata update of the counter table (cf.
T3). However, modifying both the counter values and their metadata
simultaneously can result in memory faults. We observe that mdraid
rarely updates the metadata of the counter table. Thus, we employ a
readers-writer lock mechanism to protect the metadata. Specifically,
the reader locks can be owned by multiple CPU threads while the
writer lock is exclusively held by a single thread. Before updating the
metadata, the CPU thread acquires the writer lock (cf. 3a in Figure
3b). Otherwise, if the CPU threads need to revise the counter values,
they apply for the reader locks and the counter locks successively.
Distributed blocks. In mdraid, S-Block by default covers an address
range of 64 MB. In other words, a counter needs to record and
manage such a wide range of address space. This design is optimized
for large-size write requests but may harm small-size write requests.
Figure 3c shows an example. Let’s suppose that T1 and T2 need to
modify different S-Heads A and B in the same S-Block. They then
contend for modifying the same counter, which results in hanging up
T2. Note that our multi-lock counter table allows multiple threads
to access different counters simultaneously. It cannot prevent the
congestion that targets the same counter. To tackle the challenges
imposed by the traditional S-Block design, we propose a new data
structure, called Distributed Block (D-Block), which is shown in
Figure 3c. D-Block consists of multiple S-Heads. In contrast to S-
Block, the S-Heads in D-Block are spread across different locations
in the SSDs via a configurable hash function rather than mapping to
a continuous SSD space. The default hash function takes the offset of
S-Head as input and outputs ⌈log(Size/Dsize)⌉ rightmost bit(s) of the
input offset, where Size and Dsize are the capacity of member disk
and cover ranges of D-Block, respectively. Thus, S-Heads in the same
D-Block are dispersed uniformly across the whole space. While a D-
Block maintains a cover range of 64 MB, sequential write requests
are shuffled to access different D-Blocks. By doing so, ScalaRAID
can effectively reduce the counter preemption.

IV. EVALUATION

Experiments. We conduct the experiments on a server that consists of
a 52-thread processor and 128 GB DDR4 memory. We employ Linux
v5.11.0 as the default kernel. We use mdadm to create RAID from
up to seven 1TB Samsung 980Pro SSDs. We use fio to evaluate the
performance of different RAID systems. In fio, we set the iodepth to
32 and employ libaio. We implement three different RAID systems.
(1) OrigRAID: adopting the default configurations of mdraid; (2)
HemiRAID: based on OrigRAID, we increase the number of Stripe
locks to 128; (3) ScalaRAID: based on HemiRAID, we equip every
counter with a counter lock and employ our D-Block. Considering

3 5 9 17 33
0
2
4
6
8

10

The number of CPU threads

Ba
nd

w
id

th
 (G

B/
s)

 OrigRAID HemiRAID ScalaRAID

(a) Write throughput.

63
90

63
25

63
25

63
25

65
20

63
25

28
68 92

2

10
04

2+1 SSDs
4+1 SSDs

6+1 SSDs0k
2k
4k
6k
8k

Ta
il

 la
te

nc
y

(
s)

 OrigRAID HemiRAID ScalaRAID

(b) Tail latency.
Fig. 4: Performance comparison.

that the evaluated RAID system consists of several 1TB SSDs,
ScalaRAID totally requires 16,384 counter locks.
Performance. Figure 4a shows full-stripe sequential write bandwidth
of the evaluated RAID systems. As the number of CPU threads
increases, the write bandwidth of OrigRAID gradually increases.
Nevertheless, such bandwidth saturates when the number of CPU
threads reaches 9. HemiRAID outperforms OrigRAID by 30.8%
and 39.9% when using 17 and 33 threads, respectively. This is
because HemiRAID allows more threads to get Stripe simultane-
ously and thus processes multiple requests in parallel. ScalaRAID
can further improve the bandwidth by 34.8%, on average. This is
because ScalaRAID resolves the counter lock contention thereby
maximizing the parallelism of request handling. Figure 4b illus-
trates the 99.99th percentile write latency measured from different
RAID systems. The 99.99th percentile write latency of OrigRAID
and HemiRAID are close to each other. This is because although
HemiRAID reduces the time for threads to request Stripes, these
threads are still blocked by the only one counter lock. ScalaRAID,
on the other hand, increases the number of counter locks and employs
a new data structure (D-Block) to mitigate the contention imposed
by simultaneous counter updates. ScalaRAID also prevents the
CPU threads from being blocked by the Stripe, which can minimize
the software overheads. Therefore, the 99.99th percentile latencies
of ScalaRAID are reduced to only 44.9%, 14.6%, and 15.9% for
RAIDs that consists of 2+1, 4+1, and 6+1 member SSDs, respectively.

V. ORIGINAL PUBLICATION

S. Yi et al. 2022. ScalaRAID: Optimizing Linux Software
RAID System for Next-Generation Storage. Proceedings of the
14th ACM Workshop on Hot Topics in Storage and File Systems.
https://dl.acm.org/doi/abs/10.1145/3538643.3539740

VI. ACKNOWLEDGEMENT

This research is mainly supported by Peking University start-up
package (7100603645) and NSFC Excellent Young Scientists Fund
Overseas Program (8206100425). Dr. Jung is in part supported by
NRF 2021R1AC4001773 and IITP 2021-0-00524 & 2022-0-00117,
KAIST IDEC & Start-up (G01190015), Samsung HiPHER, and Sam-
sung Research Grant (G01200447). Jie Zhang is the corresponding
author.

REFERENCES

[1] B. Hickmann and K. Shook, “Zfs and raid-z: The über-fs?” University of
Wisconsin–Madison, 2007.

[2] mdraid layer, https://github.com/torvalds/linux/tree/master/drivers/md,
2022.

[3] S. Wang, Q. Cao, Z. Lu, H. Jiang, J. Yao, and Y. Dong, “{StRAID}:
Stripe-threaded architecture for parity-based {RAIDs} with ultra-fast
{SSDs},” in 2022 USENIX Annual Technical Conference (USENIX ATC
22), 2022, pp. 915–932.

https://github.com/torvalds/linux/tree/master/drivers/md

	Introduction
	Background and Motivation
	ScalaRAID Design
	Evaluation
	Original Publication
	Acknowledgement
	References

