
Polar Coded Merkle Tree: Improved Detection of
Data Availability Attacks in Blockchain Systems

Debarnab Mitra, Lev Tauz and Lara Dolecek
Department of Electrical and Computer Engineering, University of California, Los Angeles, USA

email: debarnabucla@ucla.edu, levtauz@ucla.edu, dolecek@ee.ucla.edu

Abstract—In blockchain systems, light nodes are known to be
vulnerable to data availability (DA) attacks where they accept
an invalid block with unavailable portions. Previous works have
used LDPC and 2-D Reed Solomon (2D-RS) codes with Merkle
Trees to mitigate DA attacks. While these codes improve the DA
detection probability, they are difficult to apply to blockchains
with large blocks due to generally intractable code guarantees for
large codelengths (LDPC), large decoding complexity (2D-RS), or
large coding fraud proof sizes (2D-RS). We address these issues by
proposing the novel Polar Coded Merkle Tree (PCMT) which is
a Merkle Tree built from the encoding graphs of polar codes and
a specialized polar code construction called Sampling Efficient
Freezing (SEF). We demonstrate that the PCMT with SEF polar
codes perform well in detecting DA attacks for large block sizes.

I. INTRODUCTION

Blockchains are a disruptive new technology where data is
transacted and stored in a distributed manner among its users
(nodes). They are different from classical distributed storage
and computing systems due to the presence of malicious entities
who act for their personal benefit. Full nodes in a blockchain
system store the entire blockchain in their memory and operate
on it to verify transactions. Modern NVM technologies such as
persistent memories can improve the blockchain performance
due to their low latency and high reliability, e.g. [1].

Full nodes, however, have excessive storage and compute
requirements [3]. Thus, blockchains also run light nodes: they
only store a small fraction of each block called its header and
rely on full nodes to receive verifiable fraud proofs that are
built using a cryptographic data structure called a Merkle tree
[2]. Blockchains where light nodes are connected to a majority
of malicious full nodes are vulnerable to data availability (DA)
attacks [3], [4], [5]. In this attack, a malicious full node (i.e., an
adversary) generates a block with invalid transactions and hides
the invalid portion of the block from other nodes in the systems
preventing honest nodes from sending fraud proofs to the light
nodes. In this scenario, light nodes randomly request/sample
chunks of the block from the block generator and detect a DA
attack if any request is rejected. To improve the probability of
detection by light nodes, the Merkle tree is encoded using an
erasure code [3]. However, erasure coding allows the adversary
to carry out an incorrect-coding (IC) attack, in which case
honest full nodes can send an IC proof to the light nodes to
reject the block [3], [4]. The size of IC proofs is proportional
to the sparsity of the parity check equations.

2D Reed-Solomon (RS) codes [3] and Low-Density Parity-
Check (LDPC) codes [4] have been considered as the choice
of channel code to encode the Merkle tree in this application.
2D-RS codes offer a high probability of detecting DA attacks,
but result in large IC proof sizes and decoding complexity.
LDPC codes reduce the IC proof size and decoding complexity
compared to 2D-RS codes. However, the probability of failure
in the case of LDPC codes depends on the minimum stopping
set size of the code which is NP-hard to compute [6]. The
complexity of computing the minimum stopping size increases

Fig. 1: Left panel: System Model: A malicious node produces a block and
encodes it into a Merkle tree. DA attack occurs when the malicious node hides
symbols from the Merkle tree. Light nodes detect DA attacks by sampling the
base layer of Merkle tree; Right Panel: Factor Graph of polar codes. Circles
represent variable nodes (VNs) and squares represent check nodes (CNs).

the system design complexity and also makes it difficult to
provide an efficiently computable guarantee on the probability
of failure. To mitigate these issues, we propose the Polar
Coded Merkle Tree (PCMT): it is a Merkle tree built using
the encoding graph of polar codes. Polar codes have sparse
encoding graphs and we use it to result in small IC proof sizes.
Additionally, we provide a specialized polar code construction
called the Sampling-Efficient Freezing (SEF) Algorithm that
provides a low probability of failure to detect DA attacks.
SEF Polar codes provide an efficiently computable guarantee
on the probability of failure which simplifies system design.
Additionally, for large block sizes, a PCMT built using SEF
Polar codes result in a lower probability of failure compared
to LDPC codes. All details can be found in [7].

II. SYSTEM MODEL
Our system model is shown in Fig. 1 left panel. The

transaction block is encoded to generate a Merkle tree that
has k chunks/symbols in the base layer. In this work, we only
focus on DA attacks that occur on the base layer of the Merkle
tree. The attacks on the higher layers can be analyzed similarly.
Light nodes detect a DA attack by sampling symbols from the
base layer of the Merkle tree and they accept the block if all
the requested samples are returned. Light nodes fail to detect a
DA attack if the samples requested are not hidden. To improve
the probability of detection, each layer of the Merkle tree is
encoded using a channel code. Let N be the total number
of coded symbols in the base layer of the encoded Merkle
tree. Also let αmin, which we call the undecodable threshold,
be the minimum number of base layer Merkle tree symbols
that a malicious node must hide to prevent honest full nodes
from decoding all the coded symbols. The probability of failure
Pf (s) for a light node to detect a DA attack using s random
i.i.d. samples is Pf (s) = (1− αmin

N)s. The following metrics are
important for the encoded Merkle tree: i) IC proof size must be
small in comparison to the original block size, ii) undecodable
threshold must be large to result in a small probability of
failure, iii) complexity of computing the undecodable threshold
must be small to result in low system design complexity, and

Fig. 2: Example of a PCMT construction with k = 4 data symbols in the
base layer, rate of code R = 0.5, number of layers l = 2 and q = 2.

iv) decoding complexity must be low. In the next section, we
demonstrate a construction of a Merkle tree using polar codes
which performs well in all the above metrics.

III. POLAR CODED MERKLE TREE
In this work, we utilize polar codes using their factor graph

(FG) representation as shown in Fig. 1 right panel. The design
of polar code involves deciding which rows of the FG to select
as the frozen indices. The remaining indices are information
indices and are set as the data symbols of the transaction block.
For decoding the polar code, we use a peeling decoder.

We now explain, at a high level, the construction of a PCMT
with k information symbols in the base layer, rate of polar
codes R, and number of layers in the Merkle tree l. An example
is shown in Fig 2. Detailed construction can be found in [7].
We first divide the transaction block into k data symbols. We
then encode these data symbols using a polar code of length
Nl =

k
R . The encoding is performed as follows. We first take

the FG of a polar code of length Nl. We then set the VNs in the
rightmost column of the FG corresponding to the information
rows as the k data symbols and the VNs in the leftmost column
of the FG corresponding to the frozen rows as zero symbols.
We then use a peeling decoder to find the values of all the VNs
in the FG. These Nl(logNl+1) symbols form the base layer of
the PCMT. These Nl(logNl+1) symbols are hashed and each
set of q(logNl + 1) hashes are concatenated to generate data
symbols of the parent layer of the Merkle tree (for some integer
q ≥ 2). Once we get the data symbols of the parent layer, the
symbols in the PCMT base layer corresponding VNs that are
not in the rightmost column of the FG are dropped/erased and
are not part of the final PCMT (shown by dotted squares in
Fig. 2). We now iteratively use the same encoding, hashing and
dropping procedure as above with the obtained data symbols
to generate further layers until we get l layers. The hashes of
the final layer form the header that is stored at light nodes.

Since the CN degree in the FG graph of polar codes is at most
3, it results in small IC proof sizes. Next, we provide the design
of polar codes that results in large undecodable thresholds.

IV. SAMPLING EFFICIENT FREEZING (SEF) ALGORITHM

Algorithm 1 SEF Algorithm

1: Inputs: N , k Output: GN , F
2: Initialize: N̂ = 2⌈logN⌉, TN̂ = T

⊗
log2 N̂

2 , i = N .
3: GN = FG obtained by removing all VNs and CNs from the

last N̂ −N rows of FG GN̂ .
4: TN = TN̂ with last N̂ −N entries removed
5: F = all e ∈ {1, . . . , N} such that TN (e) is less than the

(N − k + 1)th smallest value of TN .
6: while |F| < N − k do
7: if i ̸∈ F then F = F ∪ i end if; i = i− 1

Block size b (MB)IC
pr

oo
f

si
ze

/
bl

oc
k

si
ze

Block size b (MB)

P
f
(s
)

Fig. 3: LCMT refers to LDPC encoded Merkle tree. Left panel: Comparison of
IC proof size normalized by blocksize b for different data symbol size c = b

k
;

Right panel: Comparison of Pf (s) for PCMT and LCMT for c = 256KB.

We can show the following based on [8].
Lemma 1. Let A ⊆ {1, . . . , N} be the information index set
of the polar code (of length N) used in the PCMT base layer.

Additionally, let TN = T
⊗

log2 N
2 , where T2 =

[
1
2

]
. When the

light nodes use random sampling, αmin = mini∈A TN (i).
The SEF algorithm (provided in Algorithm 1) is based on

Lemma 1. It designs the frozen index set to result in large
αmin. We call the polar FG with N rows as GN . For the SEF
algorithm, we have the following lemma.
Lemma 2. Let µ2 = largest µ such that {N−µ+1, . . . , N} ⊂
F . Also, let A = {1, . . . , N} \ F . For an (N, k) polar code
produced by the SEF algorithm, let the light nodes randomly
sample among the top N −µ2 VNs from the rightmost column
of FG GN . For this sampling strategy, we have αSEF

min =
mini∈A TN (i)∗N

N−µ2
such that Pf (s) =

(
1− αSEF

min

N

)s

.
V. SIMULATION RESULTS

Fig. 3 demonstrates the benefits of a PCMT built using SEF
polar codes with respect to the metrics i)-iv) described in Sec-
tion II. We see that for large block sizes (which correspond to
large c), the PCMT results in a lower IC proof size and a lower
probability of failure compared to an LCMT. Additionally, the
PCMT can be decoded at a low complexity using a peeling
decoder. Finally, Lemma 2 provides an easy way to calculate
the undecodable threshold for the PCMT which reduces the
system design complexity. Additional comparisons between a
PCMT, LCMT and 2D-RS codes can be found in [7]. Overall,
the PCMT built using SEF Polar codes has good performance
w.r.t metrics i)-iv) described in Section II.

REFERENCES
[1] Z. E. Lee, et al., “Performance Evaluation of Big Data Processing at

the Edge for IoT-Blockchain Applications,” IEEE Global Commun. Conf.
(GLOBECOM), 2019.

[2] S. Nakamato, “Bitcoin: A peer to peer electronic cash system,” 2008.
[Online] Available: https://bitcoin.org/bitcoin.pdf.

[3] M. Al-Bassam, et al., “Fraud and data availability proofs: Maximising light
client security and scaling blockchains with dishonest majorities,” arXiv
preprint arXiv:1809.09044, Sept. 2018.

[4] M. Yu, et al., “Coded merkle tree: Solving data availability attacks in
blockchains,” Int. Conf. on Financial Cryptography and Data Secur.,
Springer, Cham, Feb. 2020.

[5] D. Mitra, et al., “Overcoming Data Availability Attacks in Blockchain
Systems: Short Code-Length LDPC Code Design for Coded Merkle Tree,”
IEEE Transactions on Communications, vol. 70, no. 9, Sept. 2022.

[6] K. M. Krishnan, and P. Shankar, “Computing the stopping distance of a
Tanner graph is NP-hard,” IEEE Trans. on Inf. Theory, vol. 53, no. 6,
Jun. 2007.

[7] D. Mitra, et al., “Polar coded merkle tree: Improved detection of data
availability attacks in blockchain systems”, IEEE International Symposium
on Information Theory (ISIT), Jun. 2022.

[8] A. Eslami, and H. Pishro-Nik, “On finite-length performance of polar
codes: stopping sets, error floor, and concatenated design,” IEEE Transac-
tions on Communications, vol. 61, no. 3, Feb. 2013.

