
Compiler-Directed High-Performance Intermittent Computation with Power Failure Immunity

Jongouk Choi
University of Central Florida

Larry Kittinger
Block.one

Qingrui Liu
Annapurna Labs

Changhee Jung
Purdue University

I. INTRODUCTION

Energy harvesting is the logical next step in the evolution
of IoT thanks to its self-sustaining, maintenance-free, and
environmentally-friendly nature. However, energy harvesting
systems are prone to power failure since the harvested energy
is unstable and the absence of a battery. Since the systems
use a tiny capacitor as an energy buffer, they intermittently
compute only when it provides sufficient energy, which would
otherwise die, thus being called intermittent computation. This
implies that frequent power outages become the norm of pro-
gram execution, forcing it to restart from the beginning. Hence,
an intermittently-powered microcontroller (MCU) uses non-
volatile memory (NVM) as main memory without caches—
due to their power demand—and has some form of recovery
support to backup and restore necessary data across the outage.

Existing software-based recovery schemes partition program
into a series of recoverable regions (tasks) with checkpoint-
ing/logging their input register/memory data in NVM. If
any region is interrupted due to power failure, the recov-
ery schemes, in the wake of the failure, first restore the
checkpointed/logged data by loading them from NVM and
then resume the program at the beginning of the interrupted
region [1], [2]; this is so-called rollback recovery.

Unfortunately, the existing recovery schemes are not sys-
tematic, forming their regions sometimes too conservatively
or aggressively. If regions are too short (i.e., unnecessarily
making frequent checkpoints at each region boundary), the
schemes consume more energy for checkpointing but use less
energy for computing; that is because checkpoints are the most
energy-consuming in that they are essentially NVM stores.
While one could take an aggressive approach by forming
long regions for fewer checkpoints, expensive re-execution
penalty has to be paid by restarting such a long region
possibly many times across power outages. Either way, the
forward execution progress is limited leading to significant
performance degradation. Even worse, the existing recovery
schemes could suffer from a stagnation problem—livelock-
like situation where power failure repeatedly occurs before
some long region finishes—making no forward progress de-
spite the continuous consumption of hard-won energy.

This paper introduces power failure immunity (PFI), a novel
program execution property for achieving energy-efficient in-
termittent computation, to address these challenges. Regardless
of power failure frequency, PFI ensures that each code region
can fail only once, resulting in a single in-region outage. If a
region experiences a power outage, it never fails again during
the re-execution—as if it had been immunized after the first

Energy in Cap.

Tim
e

A[0] += b[0]*c;
…

A[100] += b[100]*c;
…

B[0] += c[0]*c;
…

Task A
Original binary Prior works PFI+RockClimb

(our solution)

A[0] += b[0]*c;
…
…

Task A

A[0] += b[0]*c;
(undo/redo) logs

…

Region 1 in Task A

…

A[100] += b[100]*c;
…

Region 5 in Task A

A[100] += b[100]*c;
…
…

Region 5 in Task A

A[0] += b[0]*c;
…

A[100] += b[100]*c;
…

B[0] += c[0]*c;
…

Region 1 in Task A

log restoration
…

B[100] += c[100]*c;
…
…

Region 2 in Task A

energy buffer check

Recharging Recharging

Recharging

V_off

PFI+RockClim
b

Prior w
orks

PFI-only

A[0] += b[0]*c;
(undo/redo) logs

…
A[100] += b[100]*c;

…
…

Region 1 in Task A

…

Region 5 in Task A

B[0] += c[0]*c;
…
…

Region 2 in Task A

log restoration

Recharging

Region 2 in Task A
B[0] += c[0]*c

…

Fig. 1: Comparison of intermittent computation schemes: Each
scheme runs the same program (Task A). While prior works
form many regions, e.g., Region 1∼5 in Task A, PFI generates
a few regions, and PFI+ROCKCLIMB further lengthens the
region size and eliminates the re-execution.

failure. Because of the never-fail-again nature, intermittent
computation schemes can use aggressive region formation (i.e.,
long regions) without incurring the costly re-execution penalty;
thus, enforcing PFI technically solves the stagnation problem.

The key insight is that energy harvesting systems do not
boot until their energy buffer (capacitor) is fully charged. That
is, in the event of a power outage, the program is guaranteed to
make as much progress as the full energy buffer allows, even
if no additional energy is harvested. With this in mind, this
paper introduces compiler-directed PFI enforcement, which
partitions the program into a series of code regions based on
the energy buffer size, so that each region can be completed
in a single charge cycle using the energy buffered.

Finally, this paper introduces ROCKCLIMB, a compiler
optimization technique that leverages PFI to achieve rollback-
free intermittent computation in such a way that PFI-enforced
regions never fail, resulting in no in-region outage. At a high
level, ROCKCLIMB determines whether a fully buffered energy
is secured at each region boundary to ensure that the next
region is completed without power failure. ROCKCLIMB waits
until the energy buffer is fully charged before executing the
next region if it is not secured. As a result, the rollback-free
nature of ROCKCLIMB eliminates the need for logging for
each memory write, which was required in previous work [2]
to achieve rollback recovery of power failure, as shown in
Figure 1.

II. POWER FAILURE IMMUNITY: SINGLE IN-REGION
POWER OUTAGE

To prevent repetitive in-region outages, this paper leverages
two important observations. First, energy harvesting systems
do not start to operate their microcontoller (MCU) until the
energy buffer (capacitor) is fully charged as with virtually
all commodity systems. That is, when the MCU is ready
to resume the execution in the wake of power outage, the



capacitor is always sure to have the fully buffered (charged)
energy at the starting point of the resumption. The implication
is that the power-interrupted region can make as much progress
as the full energy buffer allows, even if there is no additional
energy is harvested. We refer to the minimum progress time,
for which the MCU can be sustained under the fully buffered
energy, as safe active time (SAT).

The second observation is that if the worst-case execution
time (WCET) of any region is shorter than the SAT, the region
is assured to finish with no power failure under the fully
buffered energy.

PFI enforcement constraint: WCET (r) < SAT (µ) (1)

With that in mind, for a given region (r) and the underlying
MCU (µ), we formulate the problem of ensuring the forward
execution progress as Eq.1 above. Thus, PFI can achieve
stagnation freedom by partitioning the original program into
SAT-safe regions, each of which satisfies the PFI constraint
Eq.1; even if the SAT-safe regions may encounter power
failure, they never fail again upon recovery from the failure.
In other words, when power comes back, the previously
interrupted region never retreats before reaching the end of
the region, which ensures forward progress to the next region
without exception.

III. ROCKCLIMB: POWER-FAILURE-FREE EXECUTION

Once SAT-safe regions are formed, our compiler enables
ROCKCLIMB that leverages the PFI as a basis for achieving
rollback-free intermittent computation, i.e., extending the PFI
to much stronger guarantee that no region ever fails. To
complete each PFI-enforced region with no power failure,
ROCKCLIMB checks the energy buffer at each region bound-
ary. If the buffer is not fully charged, ROCKCLIMB waits for
the buffer to secure the full energy before starting the next
region; otherwise, it is immediately started with the guarantee
of failure-free completion—because a PFI-enforced region can
always finish with a fully buffered capacitor.

For this purpose, ROCKCLIMB leverages a voltage emer-
gency interrupt of commodity energy harvesting systems.
When a program control reaches the end of a region,
ROCKCLIMB checks the energy availability (full capacitance)
before starting the next region. For this purpose, the compiler
inserts—at each region boundary—the voltage level checking
code. That is, at each region boundary, ROCKCLIMB enables
the voltage interrupt by controlling the interrupt vector and
immediately starts the next region unless the interrupt is
generated; otherwise, ROCKCLIMB puts the microcontroller
(MCU) to a power-down mode so that it can be rebooted when
the buffer is fully charged.

In particular, ROCKCLIMB’s guarantee of no in-region
failure simplifies achieving crash consistency obviating the
memory logs in each region. Since ROCKCLIMB’s regions are
never power-interrupted (thus no rollback), they do not have
to log memory inputs at all; the absence of rollback recovery
means no need to handle the restoration of memory inputs.

The upshot is that ROCKCLIMB’s rollback-freedom saves
the high energy/latency of the NVM logging stores, thereby
achieving an energy-efficient and high-performance energy
harvesting system. Figure 1 highlights ROCKCLIMB compared
to prior works that partition program into several regions
with memory logs for recovery. While the prior works keep
spending their energy for logging, restoring, and re-executing
as shown in the figure, ROCKCLIMB here makes a further
forward progress due to its log-free and re-execution-free
intermittent computation.

IV. EVALUATION

We implemented PFI+ROCKCLIMB in the LLVM com-
piler infrastructure and conducted experiments by running
compute-intensive 11 benchmarks. To evaluate the effective-
ness of PFI+ROCKCLIMB, we conducted experiments using
TI’s MSP430FR5994 evaluation board with Powercast P2110-
EVB RF energy harvester as our energy harvesting system
testbed; we equipped the board with a 10µF capacitor. To
power the energy harvesting system, we used Powercast
TX91501-3W transmitter. In the environment, we compared
PFI+ROCKCLIMB to prior works such as Ratchet [1], Chin-
chilla [2], and ROCKCLIMB-disabled PFI-only scheme. As
shown in Figure 2, PFI+ROCKCLIMB outperforms the works
by about 2X on average.

♾

Fig. 2: Performance results in real energy harvesting sit-
uation. We compare PFI+ROCKCLIMB with Ratchet and
Chinchilla. Y-axis shows the normalized execution time to
PFI+ROCKCLIMB. ∞ represents the stagnation problem.

V. SUMMARY

This paper introduces power failure immunity (PFI) that
ensures each code region can fail at most once. In the
virtue of PFI, this work presents ROCKCLIMB, a rollback-free
intermittent computation scheme, ensuring that PFI-enforced
regions never fail. Consequently, PFI+ROCKCLIMB achieves
high-performance intermittent computation.

REFERENCES

[1] J. V. D. Woude and M. Hicks, “Intermittent computation without hardware
support or programmer intervention,” in 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 16).

[2] K. Maeng and B. Lucia, “Adaptive dynamic checkpointing for safe effi-
cient intermittent computing,” in 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18), (Carlsbad, CA), pp. 129–
144, USENIX Association, 2018.


	Introduction
	Power Failure Immunity: Single In-Region Power Outage
	RockClimb: Power-Failure-Free Execution
	Evaluation
	Summary
	References

