
Analyzing Configuration Dependencies of DAX File Systems
Tabassum Mahmud, Om Rameshwar Gatla, Duo Zhang, Carson Love, Ryan Bumann, Mai Zheng

Department of Electrical and Computer Engineering, Iowa State University, Ames, IA

1 Introduction
File systems (FS) play an essential role for managing precious data.
To meet diverse needs, they often support many configuration param-
eters. Such flexibility comes at the price of additional complexity
which can lead to subtle configuration-related issues. For example,
in Dec. 2020, Windows users observed that the ChkDsk utility of
NTFS may destroy NTFS on SSDs due to a configuration-related
bug [2]. With more and more heterogeneous devices (e.g., PM/CXL
devices, SmartSSD) and advanced features being introduced (e.g.,
DAX), the combinatorial explosion of configuration states is ex-
pected to exacerbate, which calls for novel solutions.

To address this challenge, we study 78 configuration-related is-
sues of two major Linux file systems with DAX support (i.e., Ext4
and XFS), and identify a prevalent pattern called multilevel configu-
ration dependencies. Based on the study, we build an extensible tool
called CONFD to extract the dependencies automatically, and create
six plugins to address different configuration issues. Our experi-
ments on Ext4 and XFS show that CONFD can extract more than
150 dependencies with a low false positive rate (8.4%). Moreover,
the dependency-guided plugins can identify various configuration
issues, including inaccurate documentations, configuration handling
issues, and regression test failures induced by valid configurations.

2 FS Configurations & Challenges
File System Configurations. A typical file system may be config-
ured through a set of utilities at four different stages, which makes
the configuration problem challenging:

• Create. When creating file systems, the mkfs utility (e.g.,
mke2fs for Ext4) generates the initial configurations.

• Mount. When mounting file systems, certain configurations
can be specified via mount (e.g., ‘-o dax’ to enable DAX).

• Online. Many utilities can configure a mounted FS directly by
modifying the metadata online (e.g., ChkDsk for NTFS).

• Offline. Offline utilities can also modify file system images
and change the configurations (e.g., resize2fs, e2fsck).

Note that the validation of parameters may occur at both user level
and kernel level (e.g., ‘-O inline_data’ of mke2fs and ‘-o dax’
of mount are further validated in the ext4_fill_super function
of Ext4). Therefore, we believe it is necessary to consider the file
system itself as well as all the associated utilities as an FS ecosystem
to address the configuration challenge. For simplicity, we call the
file system and utilities as components within the FS ecosystem.
FS Test Suites. Practical test suites have been created to ensure
the correctness of file systems under various configurations. Un-
fortunately, their coverage in terms of configuration is limited: less
than half of configuration parameters are used in the regression test
suites of Linux file systems (i.e., xfstests, e2fsprogs/tests )
based on our calculation. Since each parameter may have a wide
range of values representing different states, the total number of
missed configuration states is much more than the number of unused
parameters, which implies the need of better tool support.

Configuration Constraints & Dependencies. Configuration con-
straints specify the configuration requirements (e.g., data type, value
range) of software. Intuitively, such information can help identify
important configuration states, and it has proved to be effective for
addressing configuration-related issues in a wide range of applica-
tions. Configuration dependency is one special type of constraint
describing the dependent correlation among parameters, which has
shown recently to be critical for addressing complex configuration
issues in Hadoop and OpenStack. Unfortunately, although the basic
concepts have been proposed, there is limited understanding of them
in the context of file systems, let alone potential solutions.

3 What Configuration Dependencies Exist in FS
As the first step to address the challenge, we study the Ext4 and
XFS ecosystems in depth to understand the real-world patterns
of configuration issues. Our dateset includes two parts: (1) the
source code of Ext4 and XFS and seven important utilities including
mke2fs, mount, e4defrag, resize2fs, e2fsck, mkfs.xfs, and
xfs_repair; (2) a set of 78 configuration-related bug patches for
the two FS ecosystems. We summarize the major findings below.

First, the majority cases (96.2%) involve critical parameters from
more than one component, which suggests that we cannot only con-
sider one single component. Second, even within the same an FS
ecosystem, the parameters are handled in heterogeneous ways in
different components, which makes the problem even more challeng-
ing. Interestingly, despite the complexity, 71.8% cases do not require
configuration-specific workloads to manifest, which suggests that
re-using existing configuration-agnostic tests is possible.

Most importantly, we found a hierarchical pattern which we call
multilevel configuration dependencies. As summarized in Table 1,
the hierarchy includes Self Dependency (SD), Cross-Parameter De-
pendency (CPD), and Cross-Component Dependency (CCD), each
of which may contain a couple of sub-categories which describe
more specific constraints. For example, we observed both CPD and
CCD between the DAX feature and other Ext4 configurations. In one
case, a corruption was triggered when ‘-O inline_data’ was used
in mke2fs and the image was mounted with ‘-o dax’ subsequently.
In another case, the DAX feature conflicted with the ‘has_journal’
configuration, which may lead to corruptions when changing the
journaling mode online. Such unexpected dependencies implies the
complexity of adding DAX support to the Linux kernel. As we will
show in the next sections, this fine-grained characterization of real
dependencies enables building dependency-guided tools effectively.

4 How to Extract & Use Dependencies
Based on the study, we build an extensible framework called CONFD
to leverage the dependency information to address configuration-
related issues. As shown in Figure 1, CONFD consists of two main
parts: (1) ConfD-core (yellow) for extracting configuration depen-
dencies and generating critical states; (2) ConfD-plugins (green) for
detecting various configuration-related issues.

CONFD-CORE. This part contains three sub-modules. First, the

1



Multilevel Config. Dependencies Description Observed?
Self Dependency Data Type parameter P must be of a specific data type (e.g., integer) Y

(SD, 100%) Value Range P must be within a specific value range (e.g., P < 4096) Y
Cross-Parameter Control P1 of C1 can be enabled iff P2 of C1 is enabled/disabled Y

Dependency Value P1’s value depends on P2 ’s value (e.g., P1 < P2) N
(CPD, 10.3%) Behavioral component C1’s behavior depends on P1 and P2 of component C1 Y

Cross-Component Control P1 of C1 can be enabled iff P2 of C2 is enabled/disabled Y
Dependency Value P1’s value depends on P2 from another component Y

(CCD, 96.2%) Behavioral component C1’s behavior depends on P2 of C2 Y
Table 1: Multilevel Configuration Dependencies Derived From Real Configuration Bugs. Pn means parameter, Cn means component.

Figure 1: Overview of CONFD.

Framework # of States # of Duplicate # of Invalid
FB-HYDRA 56,592 42,745 (75.5%) 15,146 (26.8%)

CONFD 30 0 0
Table 2: Comparison of State Generation (10 Parameters).

Taint Analyzer performs metadata-assisted taint analysis and gen-
erates taint traces to capture the propagation flow of configura-
tion parameters in the target FS ecosystem. Second, given the taint
trace of every parameter, the Dependency Analyzer analyzes the
potential correlations between parameters based on the multilevel
dependencies (§3). Third, the State Generator generates concrete
configuration states for specific use cases; instead of randomly gen-
erating combinations of configurations which can easily lead to
useless states, it leverages dependencies to generate critical states
selectively. In addition, there is a JSON interface for customization.

CONFD-PLUGINS. The current prototype includes six plugins
for addressing different configuration issues. #1 ConfD-specCk
parses Linux man-pages and looks for potential mismatches be-
tween the documented dependencies and those dependencies ex-
tracted from the source code. #2 ConfD-handlingCk applies in-
valid configuration states which violate certain dependencies inten-
tionally to see if a misconfiguration can be handled elegantly. #3
ConfD-rfsck and #4 ConfD-gt-hydra integrate CONFD with two
open-source research prototypes (i.e., a fault injector to interrupt the
checker and an FS fuzzer), and amplify their effectiveness by pro-
viding dependency-guided input images. #5 ConfD-xfstests and
#6 ConfD-e2fsprogs integrate CONFD with standard test suites of
Linux file systems and enhance them with dependency awareness.

5 Experiments & Conclusion
We have applied CONFD to analyze Ext4 and XFS and extracted
154 unique dependencies automatically, including 35 SD, 58 CPD,
and 61 CCD, with a low false positive rate 8.4% (13/154). More-
over, compared to traditional dependency-agnostic solutions, we
found that CONFD can help address configuration-related issues
more effectively. For example, Table 2 compares the states gener-
ated by FB-HYDRA (a state-of-the-art configuration management

CONFD Plugin # of Issue Reported
(Type of Issue Reported) Ext4 XFS Total
ConfD-specCk (undoc./wrong dep.) 13 4 17
ConfD-handlingCk (bad reaction) 13 5 18
ConfD-xfstests (test case failure) 5 4 9
ConfD-e2fsprogs (test case failure) 1 N/A 1
ConfD-rfsck (uncorrectable image) 280 – 280
ConfD-gt-hydra (hang) 17 – 17

Table 3: Summary of Issues Observed via CONFD Plugins.

framework) and CONFD given the same set of configuration param-
eters. FB-HYDRA may easily generate many duplicated or invalid
states due to lack of dependency guidance. Similarly, ConfD-rfsk
and ConfD-gt-hydra also reported more issues compared to their
configuration-agnostic counterparts with dependency-guidence.

Table 3 summarizes the configuration issues triggered by CONFD
in our experiments. Overall, we observe more than 300 issues of
various types, including 17 specification issues, 18 configuration
handling issues, 10 regression test failures induced by valid con-
figurations, etc. Note that all the issues require dependency-guided
configuration states generated by CONFD to manifest. In other
words, continuously running the original research prototypes i.e.,
rfsck, gt-hydra) or standard test suites (i.e., xfstests, e2fsprogs) can-
not expose the issues. CONFD not only helps in reducing states, it
also helps with detectability of configuration-related issues.

To conclude, we have presented a study on 78 real configuration-
related issues of DAX file systems as well as the CONFD framework
for addressing configuration issues. Although CONFD works on all
the configurations, since CONFD is designed to be generic and ex-
tensible, we expect the core analysis to be applicable to other FS and
applications beyond FS. We expect that adding DAX-specific rules
and/or other NVM programs (e.g., NDCTL) to CONFD will likely
help address NVM-specific configuration issues in NVM software
stack more effectively. We hope that by open-sourcing CONFD, our
work can facilitate follow-up research in the community.
Original Publication: [1]
Acknowledgments: The authors would like to thank the anonymous
reviewers their insightful feedback. This work was supported in part
by National Science Foundation (NSF) under grants CNS-1855565,
CCF-1853714, CCF-1910747 and CNS-1943204. Any opinions,
findings, and conclusions expressed in this material are those of the
authors and do not necessarily reflect the views of the sponsor.
References

[1] Tabassum Mahmud et al. “ConfD: Analyzing Configuration
Dependencies of File Systems for Fun and Profit”. In: Pro-
ceedings of the 21st USENIX FAST. 2023.

[2] https://hothardware.com/news/windows- 10-20h2-
update-damages-ssd-file-systems-chkdsk.

2

https://hothardware.com/news/windows-10-20h2-update-damages-ssd-file-systems-chkdsk
https://hothardware.com/news/windows-10-20h2-update-damages-ssd-file-systems-chkdsk

	Introduction
	FS Configurations & Challenges
	What Configuration Dependencies Exist in FS
	How to Extract & Use Dependencies
	Experiments & Conclusion

