ПΠ

Trading Partially Stuck Cells with Errors

Haider Al Kim, Sven Puchinger, Ludo Tolhuizen, Antonia Wachter-Zeh Institute for Communications Engineering, Technical University of Munich (TUM), Germany The 14th Annual Non-Volatile Memories Workshop (NVMW'23)

March 13-14, 2023

Tur Uhrenturm

A non-volatile memory is a memory that stores the information even when powered off. Multilevel Flash Memories

• Electronic charge represents multiple levels

- Electronic charge represents multiple levels
- If charge is trapped, level can only be increased

- Electronic charge represents multiple levels
- If charge is trapped, level can only be increased
- Cells can be defective (also called Stuck-at): cannot change their value

- Electronic charge represents multiple levels
- If charge is trapped, level can only be increased
- Cells can be defective (also called Stuck-at): cannot change their value
- Erasing blocks ⇒ (slow and decreases life time)
 ⇒ avoid by only increasing levels in a new write

- Electronic charge represents multiple levels
- If charge is trapped, level can only be increased
- Cells can be defective (also called Stuck-at): cannot change their value
- Erasing blocks ⇒ (slow and decreases life time)
 ⇒ avoid by only increasing levels in a new write
- Erasing state is the 0 level \implies (forbidden!)

- Electronic charge represents multiple levels
- If charge is trapped, level can only be increased
- Cells can be defective (also called Stuck-at): cannot change their value
- Erasing blocks ⇒ (slow and decreases life time)
 ⇒ avoid by only increasing levels in a new write
- Erasing state is the 0 level \implies (forbidden!)
- Substitution errors can happen (only if a cell is partially defective or normal) ⇒ flipping levels of a cell

(Partially) Stuck Memory Cells (SMC and PSMC)

PDMC: Introduced by Kuznetsov and Tsybakov (1970)

Related Works: Heegard (1983); Gabrys, Sala, and Dolecek (2014); and Wachter-Zeh and Yaakobi (2016)

[1] A. Kuznetsov and B. Tsybakov. "Coding for memories with defective cells," in: (in Russian) Problems Inf. Transmiss. Vol. 10. 2. 1974, pp. 52–60.

[2] C. Heegard, "Partitioned Linear Block Codes for Computer Memory with'Stuck-at'Defects," IEEE Transactions on Information Theory, vol. 29, no. 6, pp. 831–842, 1983.

[3] R. Gabrys, F. Sala, and L. Dolecek, "Coding for unreliable flash memory cells," IEEE Commun. Lett., vol. 18, no. 9, pp. 1491–1494, Sep. 2014.

[4] A. Wachter-Zeh and E. Yaakobi, "Codes for Partially Stuck-at Memory Cells," IEEE Transactions on Information Theory, vol. 62, no. 2, pp. 639–654, 2016.

Full Version Papers

This work partially summarizes one of our constructions and bounds in [6] and [7] for tolerating partially stuck-at cells and correcting substitution error, and suggests treating some partially stuck cells as errors.

- [6] H. Al Kim, S. Puchinger, A. Wachter-Zeh "Bounds and Code Constructions for Partially Defect Memory Cells" Seventeenth International Workshop on Algebraic and Combinatorial Coding Theory (October 11-17, ACCT 2020)
- [7] H. Al Kim, S. Puchinger, L. Tolhuizen, and A. Wachter-Zeh, "Coding and Bounds for Partially Defective Memory Cells," (submitted to) the journal Designs, Codes and Cryptography, 2022. Arxiv version is here: https://arxiv.org/pdf/2202.07541.pdf.

Stuck Vs Partially Stuck Memory Cells

Stuck Cells (Classical Defects)

- Binary cells: cell can be stuck at level 0 or 1
- *q*-ary cells: cell can be stuck at any level $\boldsymbol{s} \in \mathbb{F}_q^n$
- A stuck cell cannot change its level!
- We "mask" our information by assuring the exact s level to match the stuck positions
- Output: vector vec with c_i = s_i for i ∈ φ, where φ of size u indexes the stuck positions.

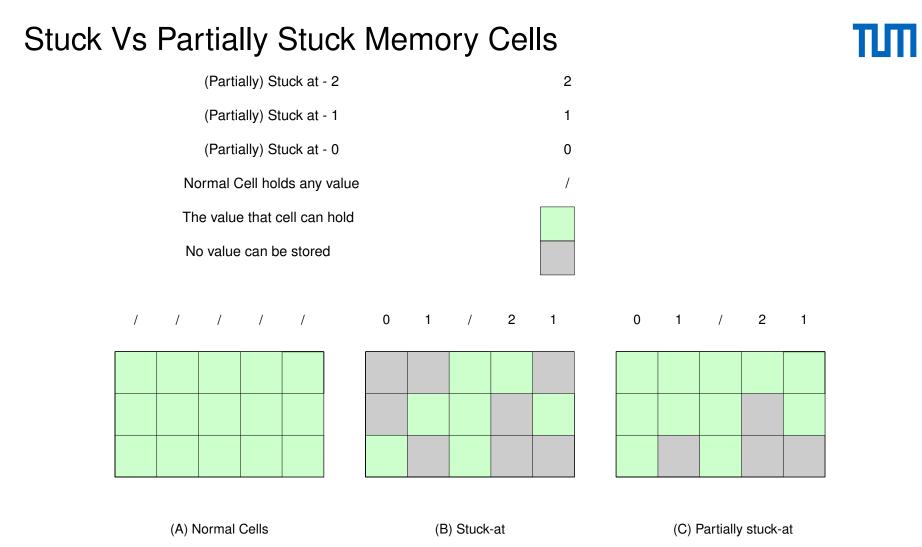
Stuck Vs Partially Stuck Memory Cells

Stuck Cells (Classical Defects)

- Binary cells: cell can be stuck at level 0 or 1
- *q*-ary cells: cell can be stuck at any level $\boldsymbol{s} \in \mathbb{F}_q^n$
- A stuck cell cannot change its level!
- We "mask" our information by assuring the exact s level to match the stuck positions
- Output: vector vec with c_i = s_i for i ∈ φ, where φ of size u indexes the stuck positions.

Partially Stuck Memory Cells

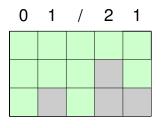
- q-ary cells: cell can be partially stuck at any level $ves \in \mathbb{F}_q^n$
- A partially stuck cell can only store levels at least s
- If s = 0: anything can be stored, (equivalent to) a normal cell
- Output: vector *c* with *c_i* ≥ *s_i* for *i* ∈ *φ*, where *φ* of size *u* indexes the partially stuck positions.



A Scenario of a Memory with PSMC and Errors¹

A scenario of $q = 2^{\mu}$ levels memory in which cells indexed by the support of the vector **s** denoted by $\phi \subseteq [n]$ of size *u* are partially stuck (defective), so zeros are forbidden in these positions.

- 1. If substitution errors occur (e.g., due to inter-cell interference) in the partially defective cells, they concede to the partially defective constraints (i.e., $\{c_i + e_i \neq 0 | i \in \phi\}$).
- 2. Errors happen in the healthy cells or in the area above the partially stuck level (s), namely (q s).



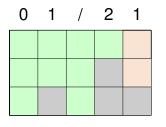
PSMC: Flipped 1 \rightarrow 2 or 2 \rightarrow 1

¹H. Al Kim, S. Puchinger, and A. Wachter-Zeh, 2020 Trading Partially Stuck Cells with Errors, Haider Al Kim (TUM)

A Scenario of a Memory with PSMC and Errors¹

A scenario of $q = 2^{\mu}$ levels memory in which cells indexed by the support of the vector **s** denoted by $\phi \subseteq [n]$ of size *u* are partially stuck (defective), so zeros are forbidden in these positions.

- 1. If substitution errors occur (e.g., due to inter-cell interference) in the partially defective cells, they concede to the partially defective constraints (i.e., $\{c_i + e_i \neq 0 | i \in \phi\}$).
- 2. Errors happen in the healthy cells or in the area above the partially stuck level (s), namely (q s).



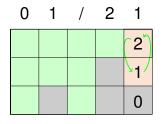
PSMC: Flipped 1 \rightarrow 2 or 2 \rightarrow 1

¹H. Al Kim, S. Puchinger, and A. Wachter-Zeh, 2020 Trading Partially Stuck Cells with Errors, Haider Al Kim (TUM)

A Scenario of a Memory with PSMC and Errors¹

A scenario of $q = 2^{\mu}$ levels memory in which cells indexed by the support of the vector **s** denoted by $\phi \subseteq [n]$ of size *u* are partially stuck (defective), so zeros are forbidden in these positions.

- 1. If substitution errors occur (e.g., due to inter-cell interference) in the partially defective cells, they concede to the partially defective constraints (i.e., $\{c_i + e_i \neq 0 | i \in \phi\}$).
- 2. Errors happen in the healthy cells or in the area above the partially stuck level (s), namely (q s).



PSMC: Flipped 1 \rightarrow 2 or 2 \rightarrow 1

¹H. Al Kim, S. Puchinger, and A. Wachter-Zeh, 2020 Trading Partially Stuck Cells with Errors, Haider Al Kim (TUM)

1. Code construction:

•

.

.

1. Code construction:

• Presenting code construction for masking partially stuck cells while additionally correcting errors [6] and [7].

1. Code construction:

- Presenting code construction for masking partially stuck cells while additionally correcting errors [6] and [7].
- The process of "masking" finds a word whose entries coincide with writable levels at the (partially) stuck cells.

1. Code construction:

- Presenting code construction for masking partially stuck cells while additionally correcting errors [6] and [7].
- The process of "masking" finds a word whose entries coincide with writable levels at the (partially) stuck cells.
- Deriving Gilbert-Varshamov-type bound for our code construction [6] and [7].

2. Trading (some) partially stuck cells as errors:

2. Trading (some) partially stuck cells as errors:

• Instead of masking PSMC directly by our construction, PSMC can be partially tolerated using the error correction capability of the code.

2. Trading (some) partially stuck cells as errors:

- Instead of masking PSMC directly by our construction, PSMC can be partially tolerated using the error correction capability of the code.
- Providing a general theorem for the exchange of *j* errors with *j* masked cells.

2. Trading (some) partially stuck cells as errors:

- Instead of masking PSMC directly by our construction, PSMC can be partially tolerated using the error correction capability of the code.
- Providing a general theorem for the exchange of *j* errors with *j* masked cells.
- Improving this theorem by introducing two lemmas (fewer errors can be corrected ↔ more PSMCs can be treated).

2. Trading (some) partially stuck cells as errors:

- Instead of masking PSMC directly by our construction, PSMC can be partially tolerated using the error correction capability of the code.
- Providing a general theorem for the exchange of *j* errors with *j* masked cells.
- Improving this theorem by introducing two lemmas (fewer errors can be corrected ↔ more PSMCs can be treated).

Numerical Analysis :

2. Trading (some) partially stuck cells as errors:

- Instead of masking PSMC directly by our construction, PSMC can be partially tolerated using the error correction capability of the code.
- Providing a general theorem for the exchange of *j* errors with *j* masked cells.
- Improving this theorem by introducing two lemmas (fewer errors can be corrected ↔ more PSMCs can be treated).

Numerical Analysis :

1. We check if our construction for any u partially stuck cells $\leq n$ satisfy Gilbert-Varshamov bound.

2. Trading (some) partially stuck cells as errors:

- Instead of masking PSMC directly by our construction, PSMC can be partially tolerated using the error correction capability of the code.
- Providing a general theorem for the exchange of *j* errors with *j* masked cells.
- Improving this theorem by introducing two lemmas (fewer errors can be corrected ↔ more PSMCs can be treated).

Numerical Analysis :

- 1. We check if our construction for any u partially stuck cells $\leq n$ satisfy Gilbert-Varshamov bound.
- We compare the direct application of our construction with the general theorem of trading that further compared to improving Lemmas.
 Trading Partially Stuck Cells with Errors, Haider Al Kim (TUM)

Code Construction over $\mathbb{F}_{2^{\mu}}$

Code Construction over $\mathbb{F}_{\mathbf{2}^{\mu}}, \mu > \mathbf{1}$

Construction 1

Let $\mu > 1$. Suppose **G** is a $k \times n$ generator matrix of an $[n, k, d]_{2^{\mu}}$ code C of the form

$$\mathbf{G} = \begin{bmatrix} \mathbf{H}_0 \\ \mathbf{G}_1 \\ \mathbf{x} \end{bmatrix} \tag{1}$$

where

1.
$$H_0 \in \mathbb{F}_2^{l \times n}$$
 is a parity check matrix of an $[n, n - l, d_0]_2$ code \mathcal{C}_0 ,

2.
$$G_1 \in \mathbb{F}_{2^{\mu}}^{(\kappa-l-1)^{(k-1)^{(k-l-1)^{(k-l-1)^{(k-l-1)^{(k-1)^{(k-l-1)^{(k-1}^{(k-1)^{(k-1)^{(k-1)^{(k-1}^{(k-1)^{(k-1)^{(k-1)^{(k-1}^{(k-1)^{(k-1)^{(k-1)^{(k-1}^{(k-1)^{(k-1}^{(k-1)^{(k-1)^{(k-1}^{(k-1}^{(k-1)^{(k-1)^{(k-1}^{(k-1)^{(k-1}^{(k-1)^{(k-1)^{$$

3. $\boldsymbol{x} \in \mathbb{F}_{2^{\mu}}^{1 \times n}$ has Hamming weight *n*.

From the code C, a PSMC can be obtained, whose encoder and decoder are shown in Algorithm 5 and Algorithm 6 in [7].

Theorem 1

The coding scheme in Construction 1 is a 2^{μ} -ary $(2^{\mu-1}d_0 - 1, 1, \lfloor \frac{d-1}{2} \rfloor)$ PSMC of length *n* and cardinality $2^{\mu(k-l-1)}2^{l(\mu-1)}$.

Encoding and Decoding - Theorem 1

Algorithm 1: Encoding (m; m'; ϕ)

Input:

• Message:

 $(\mathbf{m}', \mathbf{m}) \in \mathcal{F}' \times \mathbb{F}_{2^{\mu}}^{k-l-1}$, where $\mathcal{F} = \{\sum_{i=1}^{\mu-1} x_i \beta_i \mid (x_1, \dots, x_{\mu-1}) \in \mathbb{F}_2^{\mu-1}\}.$

- Positions of partially stuck-at-1 cells: ϕ
- Notions introduced in Construction 1.
 - 1. $\boldsymbol{w} \leftarrow \boldsymbol{m}' \cdot \boldsymbol{H}_0 + \boldsymbol{m} \cdot \boldsymbol{G}_1 + z \cdot \boldsymbol{x}$ where $z \in \mathbb{F}_{2^{\mu}}$ is chosen such that $|\{i \in \phi \mid w_i \in \mathbb{F}_2\}| \leq d_0 1$.
- 2. Choose $\gamma \in \mathbb{F}_2^{\prime}$ such that $(\gamma H_0)_i = 1 w_i$ for all $i \in \phi$ for which $w_i \in \mathbb{F}_2$.

Output: Codeword $\textbf{\textit{c}} = \textbf{\textit{w}} + \boldsymbol{\gamma} \cdot \textbf{\textit{H}}_0 \in \mathcal{C}$

Encoding and Decoding - Theorem 1

Algorithm 2: Decoding

Input:

- $y = c + e \in \mathbb{F}_{2^{\mu}}^{n}$, where *c* is a valid output of Algorithm 1 and *e* is an error of Hamming weight at most *t*.
- Notions introduced in Construction 1.
- $\hat{\boldsymbol{c}} \leftarrow \text{decode } \boldsymbol{y}$ in the code \mathcal{C}
 - 1. $\hat{\boldsymbol{c}} \leftarrow \text{decode } \boldsymbol{y}$ in the code \mathcal{C}
- 2. Obtain $\boldsymbol{a} \in \mathbb{F}'_{2^{\mu}}, \hat{\boldsymbol{m}} \in \mathbb{F}^{k-l-1}_{2^{\mu}}, \hat{\boldsymbol{z}} \in \mathbb{F}_{2^{\mu}}$ such that $\hat{\boldsymbol{c}} = \boldsymbol{a}\boldsymbol{H}_0 + \hat{\boldsymbol{m}}\boldsymbol{G}_1 + \hat{\boldsymbol{z}}\boldsymbol{x}$.
- 3. Obtain $\hat{\boldsymbol{m}}' \in \mathcal{F}^{k-l-1}$ and $\hat{\boldsymbol{\gamma}} \in \mathbb{F}_2^{k-l-1}$ such that $\boldsymbol{a} = \hat{\boldsymbol{m}}' + \hat{\boldsymbol{\gamma}}$.

Output: Message vector $(\hat{\boldsymbol{m}}, \hat{\boldsymbol{m}'})$

Trading PSMCs with Errors

(General Theorem)

Partial Masking of Partially Stuck Memory Cells

ПΠ

Proposition 1

If there is an $(n, M)_q(u, 1, t)$ PSMC, then for any j with $0 \le j \le t$, there is an $(n, M)_q(u + j, 1, t - j)$ PSMC.

Theorem 2

Let $\Sigma \subset \mathbb{F}_q^n$, and assume that there exists an $(n, M)_q(\Sigma, t)$ PSMC C. For any $j \in [t]$, there exists an $(n, M)_q(\Sigma^{(j)}, t - j)$ PSMC C_j , where

$$\Sigma^{(j)} = \Big\{ oldsymbol{s'} \in \mathbb{F}_q^n \mid \exists oldsymbol{s} \in \Sigma \left[oldsymbol{d}(oldsymbol{s},oldsymbol{s'}) \leq j ext{ and } oldsymbol{s'} \geq oldsymbol{s}
ight\}.$$

Encoding and Decoding Algorithms of Theorem 2

ПΠ

Algorithm 3 - Encoder \mathcal{E}_i

Input: $(\mathbf{m}, \mathbf{s}') \in \mathcal{M} \times \Sigma^{(j)}$.

1. Determine $\mathbf{s} \in \Sigma$ such that $d(\mathbf{s}, \mathbf{s}') \leq j$ and $\mathbf{s}' \geq \mathbf{s}$.

2. Let $\mathbf{c} = \mathcal{E}(\mathbf{m}, \mathbf{s})$.

3. Define $\mathbf{c}' = \mathcal{E}'_i(\mathbf{m}, \mathbf{s}')$ as $\mathbf{c}'_i = \max(\mathbf{c}_i, \mathbf{s}'_i)$ for $i \in [n]$.

Output: Codeword $\mathbf{c}' \in \mathbb{F}_q^n$.

Algorithm 4 - Decoder \mathcal{D}_j

Input: Retrieved $\mathbf{y} = \mathbf{c}' + \mathbf{e}$ where $wt(\mathbf{e}) \le t - j$ and $\mathbf{y} \ge \mathbf{s}'$ 1. Message $\mathbf{m} = \mathcal{D}(\mathbf{y})$ Output: Message vector \mathbf{m}

Proof of Theorem 2

ПП

Proof of Theorem 2

- 1. Let the encoder \mathcal{E}_j and the decoder \mathcal{D}_j for \mathcal{C}_j be Algorithm 3 and Algorithm 4, respectively.
- **2**. By definition, $\mathbf{c}' \geq \mathbf{s}'$.
- 3. Moreover, if $s_i = s'_i$, then $c_i \ge s_i = s'_i$, so $c_i = c'_i$.
- 4. As a result, $d(\mathbf{c}, \mathbf{c}') \leq j$.
- 5. In Algorithm 4, the decoder \mathcal{D} of \mathcal{C} is directly used for decoding \mathcal{C}_{j} .
- **6**. As $\mathbf{y} \ge \mathbf{s}'$, surely $\mathbf{y} \ge \mathbf{s}$.
- 7. Moreover, we can write $\mathbf{y} = \mathbf{c} + (\mathbf{c}' \mathbf{c} + \mathbf{e})$.
- 8. As shown above, wt($\mathbf{c}' \mathbf{c}$) $\leq j$, and so $wt(\mathbf{c} \mathbf{c}' + \mathbf{e}) \leq t$.
- 9. As a consequence, $\mathcal{D}(\mathbf{y}) = \mathbf{m}$.

Trading PSMCs with Errors

(Improvements on the General Theorem)

Improvements on Theorem 2

Improving on Theorem 2 for Construction 1 by the following Lemma.

Lemma 1

Given an $[n, k, d]_q$ code as defined in [4, Construction 3], then for any j such that $0 \le j \le \lfloor \frac{d-1}{2} \rfloor$, there is a 2^{μ} -ary $(2^{\mu-1}(d_0 + j) - 1, 1, \lfloor \frac{d-1}{2} \rfloor - j)$ PSMC of length n and size q^{k-l-1} .

Proof of Lemma 1

- 1. Let $\phi \subset [n]$ has size $u \leq 2^{\mu-1}(d_0+j)-1$.
- 2. We use the notation from Algorithm 1.
- 3. After Step 1, **w** has at most $u_0 = \lfloor \frac{2u}{2^{\mu}} \rfloor \le d_0 + j 1$ binary entries in the positions from ϕ .
- 4. After Step 2, at least $d_0 1$ of these entries in *c* differ from 0.
- 5. By setting the at most *j* other binary entries in the positions from ϕ equal to 1, the encoder introduces at most *j* errors, and guarantees that the partially-stuck-at conditions are satisfied.

Improvements on Theorem 2

Another approach for introducing errors in order to satisfy the stuck-at conditions

Lemma 2

Given an $[n, k, d]_q$ code containing a word of weight n, for any j with $0 \le j \le \lfloor \frac{d-1}{2} \rfloor$, there is a q-ary $(q-1+qj, 1, \lfloor \frac{d-1}{2} \rfloor - j)$ PSMC of length n and size q^{k-1} .

Proof of Lemma 2

- 1. Let $\phi \subset [n]$ have size $u \leq q 1 + qj$, and **x** be a codeword of weight *n*.
- 2. For each $i \in \phi$, there is exactly one $v \in \mathbb{F}_q$ such that $w_i + vx_i = 0$, and so

$$\sum_{\mathbf{v}\in\mathbb{F}_q}\mid\{i\in\phi\mid w_i+\mathbf{v}x_i=\mathbf{0}\}\mid=u.$$

- 3. Consequently, there is $v \in \mathbb{F}_q$ such that c = w + vx has at most $\lfloor \frac{u}{q} \rfloor \leq j$ entries in ϕ equal to zero.
- 4. By setting these entries of *c* to a non-zero value, the encoder introduces at most *j* errors.
- 5. As C can correct up to $\lfloor \frac{d-1}{2} \rfloor$ errors, it can correct these *j* errors and additionally up to $\lfloor \frac{d-1}{2} \rfloor j$ substitution errors.

Numerical Comparisons

(Gilbert–Varshamov Bound on PSMCs)

< **₽** > < ≣ > < ≣ >

ПГ

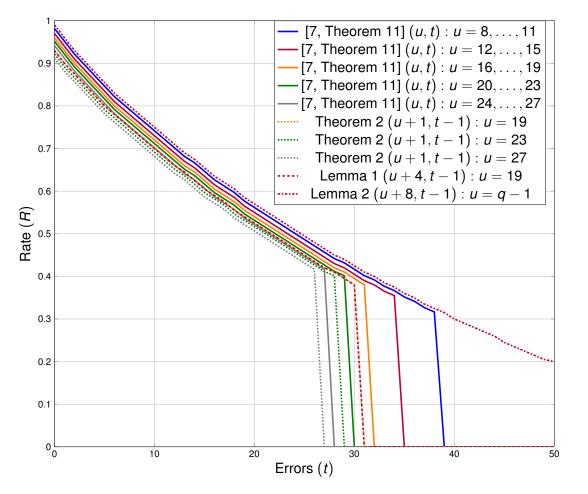


Figure: The achievable rates $R = \frac{1}{n} \log_{2^3} \mathcal{M}$ of GV bounds for different u, and t for n = 200 and $q = 2^3$ in [7, Theorem 11]. The solid plots are the rates from the derived GV like bound and the dotted lines are the rates after trading u + 1, t - 1 by Theorem 2. Trading one correctable error by Lemma 1 and Lemma 2 increases u by $2^{\mu-1}$ and 2^{μ} , respectively. Lemma 2 gives slightly higher rates for *all* $t \le 50$ while treating the same number of u cells compared to the corresponding curves from [7, Theorem 11], Theorem 2, and Lemma 1.

Summary

- This work considers coding for *partially stuck* memory cells.
- Such memory cells can only store partial information as some of their levels cannot be used due to, e.g., wearout.
- We proposed a 2^µ-ary partially stuck cell code construction for *masking* partially stuck cells while correcting substitution errors.
- We formulated a GV-like bound (found in [7, Theorem 11] on the cardinality and the minimum distance.
- We investigated a technique where the encoder, after a first masking step, introduces errors at some partially stuck positions of a codeword in order to satisfy the stuck-at constraints.
- It turns that treating some of the partially stuck cells as erroneous cells can decrease the required redundancy for some parameters, e.g., by Lemma 2.

Thank You

Any questions ... ?