
Trading Partially Stuck Cells with Errors

Haider Al Kim, Sven Puchinger, Ludo Tolhuizen, Antonia Wachter-Zeh
Institute for Communications Engineering, Technical University of Munich (TUM),
Germany
The 14th Annual Non-Volatile Memories Workshop (NVMW’23)
March 13-14, 2023

Introduction - Codes for Non-Volatile Memories

A non-volatile memory is a memory that stores the information even when powered off.

Multilevel Flash Memories

• Electronic charge represents multiple levels

• If charge is trapped, level can only be increased

• Cells can be defective (also called Stuck-at): cannot change
their value

• Erasing blocks⇒ (slow and decreases life time)
=⇒ avoid by only increasing levels in a new write

• Erasing state is the 0 level =⇒ (forbidden!)

• Substitution errors can happen (only if a cell is partially
defective or normal) =⇒ flipping levels of a cell

Trading Partially Stuck Cells with Errors, Haider Al Kim (TUM) 2

Introduction - Codes for Non-Volatile Memories

A non-volatile memory is a memory that stores the information even when powered off.

Multilevel Flash Memories

• Electronic charge represents multiple levels

• If charge is trapped, level can only be increased

• Cells can be defective (also called Stuck-at): cannot change
their value

• Erasing blocks⇒ (slow and decreases life time)
=⇒ avoid by only increasing levels in a new write

• Erasing state is the 0 level =⇒ (forbidden!)

• Substitution errors can happen (only if a cell is partially
defective or normal) =⇒ flipping levels of a cell

Trading Partially Stuck Cells with Errors, Haider Al Kim (TUM) 2

Introduction - Codes for Non-Volatile Memories

A non-volatile memory is a memory that stores the information even when powered off.

Multilevel Flash Memories

• Electronic charge represents multiple levels

• If charge is trapped, level can only be increased

• Cells can be defective (also called Stuck-at): cannot change
their value

• Erasing blocks⇒ (slow and decreases life time)
=⇒ avoid by only increasing levels in a new write

• Erasing state is the 0 level =⇒ (forbidden!)

• Substitution errors can happen (only if a cell is partially
defective or normal) =⇒ flipping levels of a cell

Trading Partially Stuck Cells with Errors, Haider Al Kim (TUM) 2

Introduction - Codes for Non-Volatile Memories

A non-volatile memory is a memory that stores the information even when powered off.

Multilevel Flash Memories

• Electronic charge represents multiple levels

• If charge is trapped, level can only be increased

• Cells can be defective (also called Stuck-at): cannot change
their value

• Erasing blocks⇒ (slow and decreases life time)
=⇒ avoid by only increasing levels in a new write

• Erasing state is the 0 level =⇒ (forbidden!)

• Substitution errors can happen (only if a cell is partially
defective or normal) =⇒ flipping levels of a cell

Trading Partially Stuck Cells with Errors, Haider Al Kim (TUM) 2

Introduction - Codes for Non-Volatile Memories

A non-volatile memory is a memory that stores the information even when powered off.

Multilevel Flash Memories

• Electronic charge represents multiple levels

• If charge is trapped, level can only be increased

• Cells can be defective (also called Stuck-at): cannot change
their value

• Erasing blocks⇒ (slow and decreases life time)
=⇒ avoid by only increasing levels in a new write

• Erasing state is the 0 level =⇒ (forbidden!)

• Substitution errors can happen (only if a cell is partially
defective or normal) =⇒ flipping levels of a cell

Trading Partially Stuck Cells with Errors, Haider Al Kim (TUM) 2

Introduction - Codes for Non-Volatile Memories

A non-volatile memory is a memory that stores the information even when powered off.

Multilevel Flash Memories

• Electronic charge represents multiple levels

• If charge is trapped, level can only be increased

• Cells can be defective (also called Stuck-at): cannot change
their value

• Erasing blocks⇒ (slow and decreases life time)
=⇒ avoid by only increasing levels in a new write

• Erasing state is the 0 level =⇒ (forbidden!)

• Substitution errors can happen (only if a cell is partially
defective or normal) =⇒ flipping levels of a cell

Trading Partially Stuck Cells with Errors, Haider Al Kim (TUM) 2

(Partially) Stuck Memory Cells (SMC and PSMC)

PDMC: Introduced by Kuznetsov and Tsybakov (1970)

Related Works: Heegard (1983); Gabrys, Sala, and Dolecek (2014); and Wachter-Zeh and Yaakobi
(2016)

[1] A. Kuznetsov and B. Tsybakov. “Coding for memories with defective cells,” in: (in Russian) Problems
Inf. Transmiss. Vol. 10. 2. 1974, pp. 52–60.
[2] C. Heegard, “Partitioned Linear Block Codes for Computer Memory with’Stuck-at’Defects,” IEEE
Transactions on Information Theory, vol. 29, no. 6, pp. 831–842, 1983.
[3] R. Gabrys, F. Sala, and L. Dolecek, “Coding for unreliable flash memory cells,” IEEE Commun. Lett.,
vol. 18, no. 9, pp. 1491–1494, Sep. 2014.
[4] A. Wachter-Zeh and E. Yaakobi, “Codes for Partially Stuck-at Memory Cells,” IEEE Transactions on
Information Theory, vol. 62, no. 2, pp. 639–654, 2016.

Trading Partially Stuck Cells with Errors, Haider Al Kim (TUM) 3

Full Version Papers

This work partially summarizes one of our constructions and bounds in [6] and [7] for
tolerating partially stuck-at cells and correcting substitution error, and suggests treating
some partially stuck cells as errors.

• [6] H. Al Kim, S. Puchinger, A. Wachter-Zeh “Bounds and Code Constructions for
Partially Defect Memory Cells” Seventeenth International Workshop on Algebraic and
Combinatorial Coding Theory (October 11-17, ACCT 2020)

• [7] H. Al Kim, S. Puchinger, L. Tolhuizen, and A. Wachter-Zeh, “Coding and Bounds for
Partially Defective Memory Cells,” (submitted to) the journal Designs, Codes and
Cryptography, 2022. Arxiv version is here: https://arxiv.org/pdf/2202.07541.pdf.

Trading Partially Stuck Cells with Errors, Haider Al Kim (TUM) 4

Stuck Vs Partially Stuck Memory Cells
Stuck Cells (Classical Defects)
• Binary cells: cell can be stuck at level 0 or 1
• q-ary cells: cell can be stuck at any level s ∈ Fn

q

• A stuck cell cannot change its level!
• We "mask" our information by assuring the exact s level to match the stuck

positions
• Output: vector vec with ci = si for i ∈ ϕ, where ϕ of size u indexes the stuck

positions.

Partially Stuck Memory Cells

• q-ary cells: cell can be partially stuck at any level ves ∈ Fn
q

• A partially stuck cell can only store levels at least s
• If s = 0: anything can be stored, (equivalent to) a normal cell
• Output: vector c with ci ≥ si for i ∈ ϕ, where ϕ of size u indexes the partially stuck

positions.

Trading Partially Stuck Cells with Errors, Haider Al Kim (TUM) 5

Stuck Vs Partially Stuck Memory Cells
Stuck Cells (Classical Defects)
• Binary cells: cell can be stuck at level 0 or 1
• q-ary cells: cell can be stuck at any level s ∈ Fn

q

• A stuck cell cannot change its level!
• We "mask" our information by assuring the exact s level to match the stuck

positions
• Output: vector vec with ci = si for i ∈ ϕ, where ϕ of size u indexes the stuck

positions.

Partially Stuck Memory Cells

• q-ary cells: cell can be partially stuck at any level ves ∈ Fn
q

• A partially stuck cell can only store levels at least s
• If s = 0: anything can be stored, (equivalent to) a normal cell
• Output: vector c with ci ≥ si for i ∈ ϕ, where ϕ of size u indexes the partially stuck

positions.
Trading Partially Stuck Cells with Errors, Haider Al Kim (TUM) 5

Stuck Vs Partially Stuck Memory Cells

No value can be stored

The value that cell can hold

/Normal Cell holds any value

0(Partially) Stuck at - 0

1(Partially) Stuck at - 1

2(Partially) Stuck at - 2

/ / / / / 0 1 / 2 1 0 1 / 2 1

(A) Normal Cells (B) Stuck-at (C) Partially stuck-at

Trading Partially Stuck Cells with Errors, Haider Al Kim (TUM) 6

A Scenario of a Memory with PSMC and Errors1

A scenario of q = 2µ levels memory in which cells indexed by the support of the vector s
denoted by ϕ ⊆ [n] of size u are partially stuck (defective), so zeros are forbidden in
these positions.

1. If substitution errors occur (e.g., due to inter-cell interference) in the partially defective
cells, they concede to the partially defective constraints (i.e., {ci + ei ̸= 0 |i ∈ ϕ}).

2. Errors happen in the healthy cells or in the area above the partially stuck level (s),
namely (q − s).

0 1 / 2 1

1

2

0

PSMC: Flipped 1→ 2 or 2→ 1
1H. Al Kim, S. Puchinger, and A. Wachter-Zeh, 2020

Trading Partially Stuck Cells with Errors, Haider Al Kim (TUM) 7

A Scenario of a Memory with PSMC and Errors1

A scenario of q = 2µ levels memory in which cells indexed by the support of the vector s
denoted by ϕ ⊆ [n] of size u are partially stuck (defective), so zeros are forbidden in
these positions.

1. If substitution errors occur (e.g., due to inter-cell interference) in the partially defective
cells, they concede to the partially defective constraints (i.e., {ci + ei ̸= 0 |i ∈ ϕ}).

2. Errors happen in the healthy cells or in the area above the partially stuck level (s),
namely (q − s).

0 1 / 2 1

1

2

0

PSMC: Flipped 1→ 2 or 2→ 1
1H. Al Kim, S. Puchinger, and A. Wachter-Zeh, 2020

Trading Partially Stuck Cells with Errors, Haider Al Kim (TUM) 7

A Scenario of a Memory with PSMC and Errors1

A scenario of q = 2µ levels memory in which cells indexed by the support of the vector s
denoted by ϕ ⊆ [n] of size u are partially stuck (defective), so zeros are forbidden in
these positions.

1. If substitution errors occur (e.g., due to inter-cell interference) in the partially defective
cells, they concede to the partially defective constraints (i.e., {ci + ei ̸= 0 |i ∈ ϕ}).

2. Errors happen in the healthy cells or in the area above the partially stuck level (s),
namely (q − s).

0 1 / 2 1

1

2

0

PSMC: Flipped 1→ 2 or 2→ 1
1H. Al Kim, S. Puchinger, and A. Wachter-Zeh, 2020

Trading Partially Stuck Cells with Errors, Haider Al Kim (TUM) 7

Our Contributions

1. Code construction:

• Presenting code construction for masking partially stuck cells while additionally
correcting errors [6] and [7]

.

• The process of "masking" finds a word whose entries coincide with writable levels at
the (partially) stuck cells.

• Deriving Gilbert-Varshamov-type bound for our code construction [6] and [7]

.

Trading Partially Stuck Cells with Errors, Haider Al Kim (TUM) 8

Our Contributions

1. Code construction:

• Presenting code construction for masking partially stuck cells while additionally
correcting errors [6] and [7].

• The process of "masking" finds a word whose entries coincide with writable levels at
the (partially) stuck cells.

• Deriving Gilbert-Varshamov-type bound for our code construction [6] and [7]

.

Trading Partially Stuck Cells with Errors, Haider Al Kim (TUM) 8

Our Contributions

1. Code construction:

• Presenting code construction for masking partially stuck cells while additionally
correcting errors [6] and [7].

• The process of "masking" finds a word whose entries coincide with writable levels at
the (partially) stuck cells.

• Deriving Gilbert-Varshamov-type bound for our code construction [6] and [7]

.

Trading Partially Stuck Cells with Errors, Haider Al Kim (TUM) 8

Our Contributions

1. Code construction:

• Presenting code construction for masking partially stuck cells while additionally
correcting errors [6] and [7].

• The process of "masking" finds a word whose entries coincide with writable levels at
the (partially) stuck cells.

• Deriving Gilbert-Varshamov-type bound for our code construction [6] and [7].

Trading Partially Stuck Cells with Errors, Haider Al Kim (TUM) 8

Our Contributions

2. Trading (some) partially stuck cells as errors:

• Instead of masking PSMC directly by our construction, PSMC can be partially
tolerated using the error correction capability of the code.

• Providing a general theorem for the exchange of j errors with j masked cells.

• Improving this theorem by introducing two lemmas
(fewer errors can be corrected←→ more PSMCs can be treated).

Numerical Analysis :

1. We check if our construction for any u partially stuck cells ≤ n satisfy
Gilbert-Varshamov bound.

2. We compare the direct application of our construction with the general theorem of
trading that further compared to improving Lemmas.

Trading Partially Stuck Cells with Errors, Haider Al Kim (TUM) 9

Our Contributions

2. Trading (some) partially stuck cells as errors:

• Instead of masking PSMC directly by our construction, PSMC can be partially
tolerated using the error correction capability of the code.

• Providing a general theorem for the exchange of j errors with j masked cells.

• Improving this theorem by introducing two lemmas
(fewer errors can be corrected←→ more PSMCs can be treated).

Numerical Analysis :

1. We check if our construction for any u partially stuck cells ≤ n satisfy
Gilbert-Varshamov bound.

2. We compare the direct application of our construction with the general theorem of
trading that further compared to improving Lemmas.

Trading Partially Stuck Cells with Errors, Haider Al Kim (TUM) 9

Our Contributions

2. Trading (some) partially stuck cells as errors:

• Instead of masking PSMC directly by our construction, PSMC can be partially
tolerated using the error correction capability of the code.

• Providing a general theorem for the exchange of j errors with j masked cells.

• Improving this theorem by introducing two lemmas
(fewer errors can be corrected←→ more PSMCs can be treated).

Numerical Analysis :

1. We check if our construction for any u partially stuck cells ≤ n satisfy
Gilbert-Varshamov bound.

2. We compare the direct application of our construction with the general theorem of
trading that further compared to improving Lemmas.

Trading Partially Stuck Cells with Errors, Haider Al Kim (TUM) 9

Our Contributions

2. Trading (some) partially stuck cells as errors:

• Instead of masking PSMC directly by our construction, PSMC can be partially
tolerated using the error correction capability of the code.

• Providing a general theorem for the exchange of j errors with j masked cells.

• Improving this theorem by introducing two lemmas
(fewer errors can be corrected←→ more PSMCs can be treated).

Numerical Analysis :

1. We check if our construction for any u partially stuck cells ≤ n satisfy
Gilbert-Varshamov bound.

2. We compare the direct application of our construction with the general theorem of
trading that further compared to improving Lemmas.

Trading Partially Stuck Cells with Errors, Haider Al Kim (TUM) 9

Our Contributions

2. Trading (some) partially stuck cells as errors:

• Instead of masking PSMC directly by our construction, PSMC can be partially
tolerated using the error correction capability of the code.

• Providing a general theorem for the exchange of j errors with j masked cells.

• Improving this theorem by introducing two lemmas
(fewer errors can be corrected←→ more PSMCs can be treated).

Numerical Analysis :

1. We check if our construction for any u partially stuck cells ≤ n satisfy
Gilbert-Varshamov bound.

2. We compare the direct application of our construction with the general theorem of
trading that further compared to improving Lemmas.

Trading Partially Stuck Cells with Errors, Haider Al Kim (TUM) 9

Our Contributions

2. Trading (some) partially stuck cells as errors:

• Instead of masking PSMC directly by our construction, PSMC can be partially
tolerated using the error correction capability of the code.

• Providing a general theorem for the exchange of j errors with j masked cells.

• Improving this theorem by introducing two lemmas
(fewer errors can be corrected←→ more PSMCs can be treated).

Numerical Analysis :

1. We check if our construction for any u partially stuck cells ≤ n satisfy
Gilbert-Varshamov bound.

2. We compare the direct application of our construction with the general theorem of
trading that further compared to improving Lemmas.

Trading Partially Stuck Cells with Errors, Haider Al Kim (TUM) 9

Our Contributions

2. Trading (some) partially stuck cells as errors:

• Instead of masking PSMC directly by our construction, PSMC can be partially
tolerated using the error correction capability of the code.

• Providing a general theorem for the exchange of j errors with j masked cells.

• Improving this theorem by introducing two lemmas
(fewer errors can be corrected←→ more PSMCs can be treated).

Numerical Analysis :

1. We check if our construction for any u partially stuck cells ≤ n satisfy
Gilbert-Varshamov bound.

2. We compare the direct application of our construction with the general theorem of
trading that further compared to improving Lemmas.

Trading Partially Stuck Cells with Errors, Haider Al Kim (TUM) 9

Code Construction over F2µ

Trading Partially Stuck Cells with Errors, Haider Al Kim (TUM) 10

Code Construction over F2µ , µ > 1

Construction 1
Let µ > 1. Suppose G is a k × n generator matrix of an [n, k , d]2µ code C of the form

G =

H0

G1

x

 (1)

where
1. H0 ∈ Fl×n

2 is a parity check matrix of an [n, n − l, d0]2 code C0,

2. G1 ∈ F(k−l−1)×n
2µ ,

3. x ∈ F1×n
2µ has Hamming weight n.

From the code C, a PSMC can be obtained, whose encoder and decoder are shown in Algorithm 5 and
Algorithm 6 in [7].

Theorem 1

The coding scheme in Construction 1 is a 2µ-ary (2µ−1d0−1, 1, ⌊d−1
2 ⌋) PSMC of length n and cardinality

2µ(k−l−1)2l(µ−1).

Trading Partially Stuck Cells with Errors, Haider Al Kim (TUM) 11

Encoding and Decoding - Theorem 1

Algorithm 1: Encoding (m;m′;ϕ)

Input:
• Message:
(m′,m) ∈ F l × Fk−l−1

2µ , where
F = {

∑µ−1
i=1 xiβi | (x1, . . . , xµ−1) ∈ Fµ−1

2 }.
• Positions of partially stuck-at-1 cells: ϕ
• Notions introduced in Construction 1.
1. w ← m′ · H0 + m · G1 + z · x where z ∈ F2µ is chosen such that |{i ∈ ϕ | wi ∈ F2}| ≤ d0 − 1.
2. Choose γ ∈ Fl

2 such that (γH0)i = 1− w i for all i ∈ ϕ for which w i ∈ F2.
Output: Codeword c = w + γ · H0 ∈ C

Trading Partially Stuck Cells with Errors, Haider Al Kim (TUM) 12

Encoding and Decoding - Theorem 1

Algorithm 2: Decoding
Input:
• y = c + e ∈ Fn

2µ, where c is a valid output of Algorithm 1 and e is an error of Hamming weight at
most t .
• Notions introduced in Construction 1.
• ĉ ← decode y in the code C
1. ĉ ← decode y in the code C
2. Obtain a ∈ Fl

2µ, m̂ ∈ Fk−l−1
2µ , ẑ ∈ F2µ such that ĉ = aH0 + m̂G1 + ẑx .

3. Obtain m̂′ ∈ Fk−l−1 and γ̂ ∈ Fk−l−1
2 such that a = m̂′ + γ̂.

Output: Message vector (m̂, m̂′)

Trading Partially Stuck Cells with Errors, Haider Al Kim (TUM) 13

Trading PSMCs with Errors

(General Theorem)

Trading Partially Stuck Cells with Errors, Haider Al Kim (TUM) 14

Partial Masking of Partially Stuck Memory Cells

Proposition 1
If there is an (n,M)q(u, 1, t) PSMC, then for any j with 0 ≤ j ≤ t , there is an (n,M)q(u + j, 1, t − j)
PSMC.

Theorem 2

Let Σ ⊂ Fn
q, and assume that there exists an (n,M)q(Σ, t) PSMC C. For any j ∈ [t], there exists an

(n,M)q(Σ
(j), t − j) PSMC Cj , where

Σ(j) =
{

s′ ∈ Fn
q | ∃s ∈ Σ [d(s, s′) ≤ j and s′ ≥ s]

}
.

Trading Partially Stuck Cells with Errors, Haider Al Kim (TUM) 15

Encoding and Decoding Algorithms of Theorem 2

Algorithm 3 - Encoder Ej

Input: (m, s′) ∈M× Σ(j).
1. Determine s ∈ Σ such that d(s, s′) ≤ j and s′ ≥ s.
2. Let c = E(m, s).
3. Define c′ = E ′j (m, s′) as c′i = max(ci , s′i) for i ∈ [n].

Output: Codeword c′ ∈ Fn
q.

Algorithm 4 - Decoder Dj

Input: Retrieved y = c′ + e where wt(e) ≤ t − j and y ≥ s′

1. Message m = D(y)
Output: Message vector m

Trading Partially Stuck Cells with Errors, Haider Al Kim (TUM) 16

Proof of Theorem 2

Proof of Theorem 2

1. Let the encoder Ej and the decoder Dj for Cj be Algorithm 3 and Algorithm 4, respectively.
2. By definition, c′ ≥ s′.
3. Moreover, if si = s′i , then ci ≥ si = s′i , so ci = c′i .
4. As a result, d(c, c′) ≤ j .
5. In Algorithm 4, the decoder D of C is directly used for decoding Cj .
6. As y ≥ s′, surely y ≥ s.
7. Moreover, we can write y = c + (c′ − c + e).
8. As shown above, wt(c′ − c) ≤ j , and so wt(c− c′ + e) ≤ t .
9. As a consequence, D(y) = m.

Trading Partially Stuck Cells with Errors, Haider Al Kim (TUM) 17

Trading PSMCs with Errors

(Improvements on the General Theorem)

Trading Partially Stuck Cells with Errors, Haider Al Kim (TUM) 18

Improvements on Theorem 2

Improving on Theorem 2 for Construction 1 by the following Lemma.

Lemma 1

Given an [n, k , d]q code as defined in [4, Construction 3], then for any j such that 0 ≤ j ≤ ⌊d−1
2 ⌋, there

is a 2µ-ary (2µ−1(d0 + j)− 1, 1, ⌊d−1
2 ⌋ − j) PSMC of length n and size qk−l−1.

Proof of Lemma 1

1. Let ϕ ⊂ [n] has size u ≤ 2µ−1(d0 + j)− 1.
2. We use the notation from Algorithm 1.
3. After Step 1, w has at most u0 = ⌊2u

2µ⌋ ≤ d0 + j − 1 binary entries in the positions from ϕ.
4. After Step 2, at least d0 − 1 of these entries in c differ from 0.
5. By setting the at most j other binary entries in the positions from ϕ equal to 1, the encoder

introduces at most j errors, and guarantees that the partially-stuck-at conditions are satisfied.

Trading Partially Stuck Cells with Errors, Haider Al Kim (TUM) 19

Improvements on Theorem 2

Another approach for introducing errors in order to satisfy the stuck-at conditions

Lemma 2

Given an [n, k , d]q code containing a word of weight n, for any j with 0 ≤ j ≤ ⌊d−1
2 ⌋, there is a q-ary

(q − 1 + qj, 1, ⌊d−1
2 ⌋ − j) PSMC of length n and size qk−1.

Proof of Lemma 2

1. Let ϕ ⊂ [n] have size u ≤ q − 1 + qj , and x be a codeword of weight n.
2. For each i ∈ ϕ, there is exactly one v ∈ Fq such that wi + vxi = 0, and so∑

v∈Fq

| {i ∈ ϕ | wi + vxi = 0} | = u.

3. Consequently, there is v ∈ Fq such that c = w + vx has at most ⌊u
q⌋ ≤ j entries in ϕ equal to zero.

4. By setting these entries of c to a non-zero value, the encoder introduces at most j errors.
5. As C can correct up to ⌊d−1

2 ⌋ errors, it can correct these j errors and additionally up to ⌊d−1
2 ⌋ − j

substitution errors.

Trading Partially Stuck Cells with Errors, Haider Al Kim (TUM) 20

Numerical Comparisons

(Gilbert–Varshamov Bound on PSMCs)

Trading Partially Stuck Cells with Errors, Haider Al Kim (TUM) 21

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Errors (t)

R
at

e
(R

)

[7, Theorem 11] (u, t) : u = 8, . . . , 11
[7, Theorem 11] (u, t) : u = 12, . . . , 15
[7, Theorem 11] (u, t) : u = 16, . . . , 19
[7, Theorem 11] (u, t) : u = 20, . . . , 23
[7, Theorem 11] (u, t) : u = 24, . . . , 27

Theorem 2 (u + 1, t − 1) : u = 19
Theorem 2 (u + 1, t − 1) : u = 23
Theorem 2 (u + 1, t − 1) : u = 27
Lemma 1 (u + 4, t − 1) : u = 19

Lemma 2 (u + 8, t − 1) : u = q − 1

Figure: The achievable rates R = 1
n log23M of GV bounds for different u, and t for n = 200 and q = 23 in [7, Theorem 11]. The solid plots are the rates

from the derived GV like bound and the dotted lines are the rates after trading u + 1, t − 1 by Theorem 2. Trading one correctable error by Lemma 1 and
Lemma 2 increases u by 2µ−1 and 2µ, respectively. Lemma 2 gives slightly higher rates for all t ≤ 50 while treating the same number of u cells compared
to the corresponding curves from [7, Theorem 11], Theorem 2, and Lemma 1.

Trading Partially Stuck Cells with Errors, Haider Al Kim (TUM) 22

Summary

• This work considers coding for partially stuck memory cells.
• Such memory cells can only store partial information as some of their levels cannot be

used due to, e.g., wearout.
• We proposed a 2µ-ary partially stuck cell code construction for masking partially stuck

cells while correcting substitution errors.
• We formulated a GV-like bound (found in [7, Theorem 11] on the cardinality and the

minimum distance.
• We investigated a technique where the encoder, after a first masking step, introduces

errors at some partially stuck positions of a codeword in order to satisfy the stuck-at
constraints.
• It turns that treating some of the partially stuck cells as erroneous cells can decrease

the required redundancy for some parameters, e.g., by Lemma 2.

Trading Partially Stuck Cells with Errors, Haider Al Kim (TUM) 23

Thank You

Any questions ... ?

Trading Partially Stuck Cells with Errors, Haider Al Kim (TUM) 24

