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Introduction - Codes for Non-Volatile Memories

A non-volatile memory is a memory that stores the information even when powered off.

Multilevel Flash Memories

• Electronic charge represents multiple levels

• If charge is trapped, level can only be increased

• Cells can be defective (also called Stuck-at): cannot change
their value

• Erasing blocks⇒ (slow and decreases life time)
=⇒ avoid by only increasing levels in a new write

• Erasing state is the 0 level =⇒ (forbidden!)

• Substitution errors can happen (only if a cell is partially
defective or normal) =⇒ flipping levels of a cell
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(Partially) Stuck Memory Cells (SMC and PSMC)

PDMC: Introduced by Kuznetsov and Tsybakov (1970)

Related Works: Heegard (1983); Gabrys, Sala, and Dolecek (2014); and Wachter-Zeh and Yaakobi
(2016)

[1] A. Kuznetsov and B. Tsybakov. “Coding for memories with defective cells,” in: (in Russian) Problems
Inf. Transmiss. Vol. 10. 2. 1974, pp. 52–60.
[2] C. Heegard, “Partitioned Linear Block Codes for Computer Memory with’Stuck-at’Defects,” IEEE
Transactions on Information Theory, vol. 29, no. 6, pp. 831–842, 1983.
[3] R. Gabrys, F. Sala, and L. Dolecek, “Coding for unreliable flash memory cells,” IEEE Commun. Lett.,
vol. 18, no. 9, pp. 1491–1494, Sep. 2014.
[4] A. Wachter-Zeh and E. Yaakobi, “Codes for Partially Stuck-at Memory Cells,” IEEE Transactions on
Information Theory, vol. 62, no. 2, pp. 639–654, 2016.
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Full Version Papers

This work partially summarizes one of our constructions and bounds in [6] and [7] for
tolerating partially stuck-at cells and correcting substitution error, and suggests treating
some partially stuck cells as errors.

• [6] H. Al Kim, S. Puchinger, A. Wachter-Zeh “Bounds and Code Constructions for
Partially Defect Memory Cells” Seventeenth International Workshop on Algebraic and
Combinatorial Coding Theory (October 11-17, ACCT 2020)

• [7] H. Al Kim, S. Puchinger, L. Tolhuizen, and A. Wachter-Zeh, “Coding and Bounds for
Partially Defective Memory Cells,” (submitted to) the journal Designs, Codes and
Cryptography, 2022. Arxiv version is here: https://arxiv.org/pdf/2202.07541.pdf.
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Stuck Vs Partially Stuck Memory Cells
Stuck Cells (Classical Defects)
• Binary cells: cell can be stuck at level 0 or 1
• q-ary cells: cell can be stuck at any level s ∈ Fn

q

• A stuck cell cannot change its level!
• We "mask" our information by assuring the exact s level to match the stuck

positions
• Output: vector vec with ci = si for i ∈ ϕ, where ϕ of size u indexes the stuck

positions.

Partially Stuck Memory Cells

• q-ary cells: cell can be partially stuck at any level ves ∈ Fn
q

• A partially stuck cell can only store levels at least s
• If s = 0: anything can be stored, (equivalent to) a normal cell
• Output: vector c with ci ≥ si for i ∈ ϕ, where ϕ of size u indexes the partially stuck

positions.
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Stuck Vs Partially Stuck Memory Cells

No value can be stored

The value that cell can hold

/Normal Cell holds any value

0(Partially) Stuck at - 0

1(Partially) Stuck at - 1

2(Partially) Stuck at - 2

/ / / / / 0 1 / 2 1 0 1 / 2 1

(A) Normal Cells (B) Stuck-at (C) Partially stuck-at
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A Scenario of a Memory with PSMC and Errors1

A scenario of q = 2µ levels memory in which cells indexed by the support of the vector s
denoted by ϕ ⊆ [n] of size u are partially stuck (defective), so zeros are forbidden in
these positions.

1. If substitution errors occur (e.g., due to inter-cell interference) in the partially defective
cells, they concede to the partially defective constraints (i.e., {ci + ei ̸= 0 |i ∈ ϕ}).

2. Errors happen in the healthy cells or in the area above the partially stuck level (s),
namely (q − s).

0 1 / 2 1

1

2

0

PSMC: Flipped 1→ 2 or 2→ 1
1H. Al Kim, S. Puchinger, and A. Wachter-Zeh, 2020
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Our Contributions

1. Code construction:

• Presenting code construction for masking partially stuck cells while additionally
correcting errors [6] and [7]

.

• The process of "masking" finds a word whose entries coincide with writable levels at
the (partially) stuck cells.

• Deriving Gilbert-Varshamov-type bound for our code construction [6] and [7]

.
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Our Contributions

2. Trading (some) partially stuck cells as errors:

• Instead of masking PSMC directly by our construction, PSMC can be partially
tolerated using the error correction capability of the code.

• Providing a general theorem for the exchange of j errors with j masked cells.

• Improving this theorem by introducing two lemmas
(fewer errors can be corrected←→ more PSMCs can be treated).

Numerical Analysis :

1. We check if our construction for any u partially stuck cells ≤ n satisfy
Gilbert-Varshamov bound.

2. We compare the direct application of our construction with the general theorem of
trading that further compared to improving Lemmas.
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Code Construction over F2µ
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Code Construction over F2µ , µ > 1

Construction 1
Let µ > 1. Suppose G is a k × n generator matrix of an [n, k , d ]2µ code C of the form

G =

H0

G1

x

 (1)

where
1. H0 ∈ Fl×n

2 is a parity check matrix of an [n, n − l, d0]2 code C0,

2. G1 ∈ F(k−l−1)×n
2µ ,

3. x ∈ F1×n
2µ has Hamming weight n.

From the code C, a PSMC can be obtained, whose encoder and decoder are shown in Algorithm 5 and
Algorithm 6 in [7].

Theorem 1

The coding scheme in Construction 1 is a 2µ-ary (2µ−1d0−1, 1, ⌊d−1
2 ⌋) PSMC of length n and cardinality

2µ(k−l−1)2l(µ−1).
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Encoding and Decoding - Theorem 1

Algorithm 1: Encoding (m;m′;ϕ)

Input:
• Message:
(m′,m) ∈ F l × Fk−l−1

2µ , where
F = {

∑µ−1
i=1 xiβi | (x1, . . . , xµ−1) ∈ Fµ−1

2 }.
• Positions of partially stuck-at-1 cells: ϕ
• Notions introduced in Construction 1.
1. w ← m′ · H0 + m · G1 + z · x where z ∈ F2µ is chosen such that |{i ∈ ϕ | wi ∈ F2}| ≤ d0 − 1.
2. Choose γ ∈ Fl

2 such that (γH0)i = 1− w i for all i ∈ ϕ for which w i ∈ F2.
Output: Codeword c = w + γ · H0 ∈ C
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Encoding and Decoding - Theorem 1

Algorithm 2: Decoding
Input:
• y = c + e ∈ Fn

2µ, where c is a valid output of Algorithm 1 and e is an error of Hamming weight at
most t .
• Notions introduced in Construction 1.
• ĉ ← decode y in the code C
1. ĉ ← decode y in the code C
2. Obtain a ∈ Fl

2µ, m̂ ∈ Fk−l−1
2µ , ẑ ∈ F2µ such that ĉ = aH0 + m̂G1 + ẑx .

3. Obtain m̂′ ∈ Fk−l−1 and γ̂ ∈ Fk−l−1
2 such that a = m̂′ + γ̂.

Output: Message vector (m̂, m̂′)
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Trading PSMCs with Errors

(General Theorem)
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Partial Masking of Partially Stuck Memory Cells

Proposition 1
If there is an (n,M)q(u, 1, t) PSMC, then for any j with 0 ≤ j ≤ t , there is an (n,M)q(u + j, 1, t − j)
PSMC.

Theorem 2

Let Σ ⊂ Fn
q, and assume that there exists an (n,M)q(Σ, t) PSMC C. For any j ∈ [t ], there exists an

(n,M)q(Σ
(j), t − j) PSMC Cj , where

Σ(j) =
{

s′ ∈ Fn
q | ∃s ∈ Σ [d(s, s′) ≤ j and s′ ≥ s]

}
.
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Encoding and Decoding Algorithms of Theorem 2

Algorithm 3 - Encoder Ej

Input: (m, s′) ∈M× Σ(j).
1. Determine s ∈ Σ such that d(s, s′) ≤ j and s′ ≥ s.
2. Let c = E(m, s).
3. Define c′ = E ′j (m, s′) as c′i = max(ci , s′i) for i ∈ [n].

Output: Codeword c′ ∈ Fn
q.

Algorithm 4 - Decoder Dj

Input: Retrieved y = c′ + e where wt(e) ≤ t − j and y ≥ s′

1. Message m = D(y)
Output: Message vector m
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Proof of Theorem 2

Proof of Theorem 2

1. Let the encoder Ej and the decoder Dj for Cj be Algorithm 3 and Algorithm 4, respectively.
2. By definition, c′ ≥ s′.
3. Moreover, if si = s′i , then ci ≥ si = s′i , so ci = c′i .
4. As a result, d(c, c′) ≤ j .
5. In Algorithm 4, the decoder D of C is directly used for decoding Cj .
6. As y ≥ s′, surely y ≥ s.
7. Moreover, we can write y = c + (c′ − c + e).
8. As shown above, wt(c′ − c) ≤ j , and so wt(c− c′ + e) ≤ t .
9. As a consequence, D(y) = m.
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Trading PSMCs with Errors

(Improvements on the General Theorem)
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Improvements on Theorem 2

Improving on Theorem 2 for Construction 1 by the following Lemma.

Lemma 1

Given an [n, k , d ]q code as defined in [4, Construction 3], then for any j such that 0 ≤ j ≤ ⌊d−1
2 ⌋, there

is a 2µ-ary (2µ−1(d0 + j)− 1, 1, ⌊d−1
2 ⌋ − j) PSMC of length n and size qk−l−1.

Proof of Lemma 1

1. Let ϕ ⊂ [n] has size u ≤ 2µ−1(d0 + j)− 1.
2. We use the notation from Algorithm 1.
3. After Step 1, w has at most u0 = ⌊2u

2µ⌋ ≤ d0 + j − 1 binary entries in the positions from ϕ.
4. After Step 2, at least d0 − 1 of these entries in c differ from 0.
5. By setting the at most j other binary entries in the positions from ϕ equal to 1, the encoder

introduces at most j errors, and guarantees that the partially-stuck-at conditions are satisfied.
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Improvements on Theorem 2

Another approach for introducing errors in order to satisfy the stuck-at conditions

Lemma 2

Given an [n, k , d ]q code containing a word of weight n, for any j with 0 ≤ j ≤ ⌊d−1
2 ⌋, there is a q-ary

(q − 1 + qj, 1, ⌊d−1
2 ⌋ − j) PSMC of length n and size qk−1.

Proof of Lemma 2

1. Let ϕ ⊂ [n] have size u ≤ q − 1 + qj , and x be a codeword of weight n.
2. For each i ∈ ϕ, there is exactly one v ∈ Fq such that wi + vxi = 0, and so∑

v∈Fq

| {i ∈ ϕ | wi + vxi = 0} | = u.

3. Consequently, there is v ∈ Fq such that c = w + vx has at most ⌊u
q⌋ ≤ j entries in ϕ equal to zero.

4. By setting these entries of c to a non-zero value, the encoder introduces at most j errors.
5. As C can correct up to ⌊d−1

2 ⌋ errors, it can correct these j errors and additionally up to ⌊d−1
2 ⌋ − j

substitution errors.
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Numerical Comparisons

(Gilbert–Varshamov Bound on PSMCs)

Trading Partially Stuck Cells with Errors, Haider Al Kim (TUM) 21



0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Errors (t)

R
at

e
(R

)

[7, Theorem 11] (u, t) : u = 8, . . . , 11
[7, Theorem 11] (u, t) : u = 12, . . . , 15
[7, Theorem 11] (u, t) : u = 16, . . . , 19
[7, Theorem 11] (u, t) : u = 20, . . . , 23
[7, Theorem 11] (u, t) : u = 24, . . . , 27

Theorem 2 (u + 1, t − 1) : u = 19
Theorem 2 (u + 1, t − 1) : u = 23
Theorem 2 (u + 1, t − 1) : u = 27
Lemma 1 (u + 4, t − 1) : u = 19

Lemma 2 (u + 8, t − 1) : u = q − 1

Figure: The achievable rates R = 1
n log23M of GV bounds for different u, and t for n = 200 and q = 23 in [7, Theorem 11]. The solid plots are the rates

from the derived GV like bound and the dotted lines are the rates after trading u + 1, t − 1 by Theorem 2. Trading one correctable error by Lemma 1 and
Lemma 2 increases u by 2µ−1 and 2µ, respectively. Lemma 2 gives slightly higher rates for all t ≤ 50 while treating the same number of u cells compared
to the corresponding curves from [7, Theorem 11], Theorem 2, and Lemma 1.
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Summary

• This work considers coding for partially stuck memory cells.
• Such memory cells can only store partial information as some of their levels cannot be

used due to, e.g., wearout.
• We proposed a 2µ-ary partially stuck cell code construction for masking partially stuck

cells while correcting substitution errors.
• We formulated a GV-like bound (found in [7, Theorem 11] on the cardinality and the

minimum distance.
• We investigated a technique where the encoder, after a first masking step, introduces

errors at some partially stuck positions of a codeword in order to satisfy the stuck-at
constraints.
• It turns that treating some of the partially stuck cells as erroneous cells can decrease

the required redundancy for some parameters, e.g., by Lemma 2.
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Thank You

Any questions ... ?
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