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Introduction
The dominance of non-volatile memories and PCMs (phase change memories) as memory
solutions for variety of applications have become obvious due to their advantages as
permanent storage devices [1].
Problem Description: PCMs may face failures in changing their states, in turn, its cells
hold only one phase and they become stuck (defective). On the other hand, random errors
may occur on these defective memories.
Solution: A mechanism called masking is used to determine a word
whose entries coincide with writable levels at the (partially) stuck cells.
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Previous works: In [2], the author considered the problem of masking fully stuck cells to-
gether with error correction. The error-free case with partially stuck cells has been consid-
ered in [3] in which improvements on the redundancy necessary for masking compared to
[2] are achieved.
Our Contribution: In our code constructions in [4], we consider the problem of combined er-
ror correction and masking of partially stuck cells, and we reduce the redundancy necessary
for masking, similar to the results in [3] and even reduce further compared to [3, Construction
5].
Focus: We propose techniques of using part of the error-correcting capability to mask more
partially stuck cells. This observation was also made in [1,Theorem 1].

Definitions
(Σ, t)-PSMC: For Σ ⊂ Fn

q and non-negative integer t, a q-ary (Σ, t)-partially-stuck-at-masking
code C of length n and size M is a coding scheme consisting of a message set M of size M,
an encoder E and a decoder D. If Σ = {s ∈ {0,1}n | wt(s)≤ u}, we say q-ary (u,1, t) PSMC.

Proposition 1 [4, Proposition 3]
If there is an (n,M)q(u,1, t) PSMC, then for any j with 0≤ j ≤ t, there is an (n,M)q(u+ j,1, t− j)
PSMC.

Theorem 1 (Partial Masking PSMC) [4, Theorem 6]
Let Σ ⊂ Fn

q, and assume that there exists an (n,M)q(Σ, t) PSMC C. For any j ∈ [t], there exists
an (n,M)q(Σ

( j), t − j) PSMC C j, where

Σ
( j) =

{
s′ ∈ Fn

q | ∃s ∈ Σ
[
d(s,s′)≤ j and s′ ≥ s

]}
.

Proof of Theorem 1
Let the encoder E j and the decoder D j for C j be Algorithm 1 and Algorithm 2, respectively.
By definition, c′ ≥ s′. Moreover, if si = s′i, then ci ≥ si = s′i, so ci = c′i. As a result, d(c,c′)≤ j.

In Algorithm 2, the decoder D of C is directly used for decoding C j. As y ≥ s′, surely
y ≥ s. Moreover, we can write y = c+(c′− c+ e). As shown above, wt(c′− c) ≤ j, and so
wt(c− c′+ e)≤ t. As a consequence, D(y) = m.

Algorithm 1 - Encoder E j

Input: (m,s′) ∈M×Σ( j).

1. Determine s ∈ Σ such that d(s,s′)≤ j and s′ ≥ s.
2. Let c = E(m,s).
3. Define c′ = E ′

j(m,s′) as c′i = max(ci,s′i) for i ∈ [n].

Output: Codeword c′ ∈ Fn
q.

Algorithm 2 - Decoder D j

Input: Retrieved y = c′+ e where wt(e)≤ t − j and y ≥ s′

1. Message m =D(y)

Output: Message vector m

Lemma 1 [4, Lemma 1]

Given an [n,k,d]q code as defined in [4, Construction 3], then for any j such that 0≤ j ≤⌊d−1
2 ⌋,

there is a 2µ-ary (2µ−1(d0+ j)−1,1,⌊d−1
2 ⌋− j) PSMC of length n and size qk−l−1.

Lemma 2 [4, Lemma 2]

Given an [n,k,d]q code containing a word of weight n, for any j with 0 ≤ j ≤ ⌊d−1
2 ⌋, there is a

q-ary (q−1+q j,1,⌊d−1
2 ⌋− j) PSMC of length n and size qk−1.

Lemma 3 (Generalization of Lemma 2) [4, Lemma 3]

Given an [n,k,d]q code containing a word of weight n. Let 0 ≤ j ≤ ⌊d−1
2 ⌋, and let

Σ =

{
s ∈ Fn

q

∣∣∣ ∑
i

si ≤ q−1+q j
}
.

There is a q-ary (Σ,⌊d−1
2 ⌋− j) PSMC of length n and size qk−1.

Comparisons Gilbert–Varshamov-type Bounds
For [4, Construction 3], we have derived Gilbert–Varshamov-type bound in [4, Theorem 11].
Then, we have compared the direct application of [4, Theorem 11] with the exchange of
a one error correction ability with a single masking capability of a partially stuck cell by
Theorem 1 that further compared to Lemma 1 and Lemma 2 as shown in Figure 1.
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Figure 1. The achievable rates R = 1
n logqM of GV bounds for different u, and t for n = 200

and q = 23 in [4, Theorem 11], Theorem 1, Lemma 1 and Lemma 2.

Conclusion
Treating some of the partially stuck cells as erroneous cells can decrease the required re-
dundancy for some parameters using Theorem 6. Lemma 1 and Lemma 2 improve upon
Theorem 6 (i.e. see the perfectly matched dotted-orange and dashed-red plots for u = 19).
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