Institute for Communications Engineering TUM School of Computation, Information and Technology Technical University of Munich

Trading Partially Stuck Cells with Errors

Haider Al Kim, Sven Puchinger, Ludo Tolhuizen, Antonia Wachter-Zeh

haider.alkim@tum.de, sven.puchinger@tum.de, ludo.tolhuizen@philips.com, antonia.wachter-zeh@tum.de

Introduction

Cell Levels

Level-3 (3)

Level-2 (2)

Level-1 (1)

Level-0 (0)

The dominance of non-volatile memories and PCMs (phase change memories) as memory solutions for variety of applications have become obvious due to their advantages as permanent storage devices [1].

Problem Description: PCMs may face failures in changing their states, in turn, its cells hold only one phase and they become **stuck** (**defective**). On the other hand, random errors may occur on these defective memories.

Algorithm 2 - Decoder \mathcal{D}_i

Input: Retrieved $\mathbf{y} = \mathbf{c}' + \mathbf{e}$ where $wt(\mathbf{e}) \le t - j$ and $\mathbf{y} \ge \mathbf{s}'$

1. Message $\mathbf{m} = \mathcal{D}(\mathbf{y})$

Solution: A mechanism called **masking** is used to determine a word whose entries coincide with writable levels at the (partially) stuck cells.

Reliable cell stores any value The value that cell can store $\in \mathbb{Z}/4\mathbb{Z}$

(A) Reliable Cells

(B) Stuck Cells (C) Partially Stuck Cells

Previous works: In [2], the author considered the problem of masking fully stuck cells together with error correction. The error-free case with partially stuck cells has been considered in [3] in which improvements on the redundancy necessary for masking compared to [2] are achieved.

Our Contribution: In our code constructions in [4], we consider the problem of combined error correction and masking of partially stuck cells, and we reduce the redundancy necessary for masking, similar to the results in [3] and even reduce further compared to [3, Construction

Output: Message vector m

Lemma 1 [4, Lemma 1]

Given an $[n,k,d]_q$ code as defined in [4, Construction 3], then for any j such that $0 \le j \le \lfloor \frac{d-1}{2} \rfloor$, there is a 2^{μ} -ary $(2^{\mu-1}(d_0+j)-1,1,\lfloor \frac{d-1}{2} \rfloor - j)$ PSMC of length n and size q^{k-l-1} .

Lemma 2 [4, Lemma 2]

Given an $[n,k,d]_q$ code containing a word of weight n, for any j with $0 \le j \le \lfloor \frac{d-1}{2} \rfloor$, there is a q-ary $(q-1+qj,1,\lfloor \frac{d-1}{2} \rfloor - j)$ PSMC of length n and size q^{k-1} .

Lemma 3 (Generalization of Lemma 2) [4, Lemma 3]

Given an $[n,k,d]_q$ code containing a word of weight n. Let $0 \le j \le \lfloor \frac{d-1}{2} \rfloor$, and let

 $\Sigma = \left\{ \mathbf{s} \in \mathbb{F}_q^n \, \Big| \, \sum_i s_i \leq q - 1 + qj \right\}.$

There is a *q*-ary $(\Sigma, \lfloor \frac{d-1}{2} \rfloor - j)$ PSMC of length *n* and size q^{k-1} .

Comparisons Gilbert–Varshamov-type Bounds

For [4, Construction 3], we have derived Gilbert–Varshamov-type bound in [4, Theorem 11]. Then, we have compared the direct application of [4, Theorem 11] with the exchange of a one error correction ability with a single masking capability of a partially stuck cell by Theorem 1 that further compared to Lemma 1 and Lemma 2 as shown in Figure 1.

1 - [4 Theorem 11] $(u t) \cdot u = 8$ 11

5]. **Focus**: We propose techniques of using part of the error-correcting capability to mask more partially stuck cells. This observation was also made in [1,Theorem 1].

Definitions

(Σ , t)-**PSMC**: For $\Sigma \subset \mathbb{F}_q^n$ and non-negative integer t, a q-ary (Σ , t)-partially-stuck-at-masking code C of length n and size M is a coding scheme consisting of a message set \mathcal{M} of size M, an encoder \mathcal{E} and a decoder \mathcal{D} . If $\Sigma = \{\mathbf{s} \in \{0,1\}^n \mid wt(\mathbf{s}) \leq u\}$, we say q-ary (u,1,t) PSMC.

Proposition 1 [4, Proposition 3]

If there is an $(n,M)_q(u,1,t)$ PSMC, then for any j with $0 \le j \le t$, there is an $(n,M)_q(u+j,1,t-j)$ PSMC.

Theorem 1 (Partial Masking PSMC) [4, Theorem 6]

Let $\Sigma \subset \mathbb{F}_q^n$, and assume that there exists an $(n, M)_q(\Sigma, t)$ PSMC C. For any $j \in [t]$, there exists an $(n, M)_q(\Sigma^{(j)}, t - j)$ PSMC C_j , where

 $\Sigma^{(j)} = \left\{ \mathbf{s}' \in \mathbb{F}_q^n \mid \exists \mathbf{s} \in \Sigma \left[d(\mathbf{s}, \mathbf{s}') \le j \text{ and } \mathbf{s}' \ge \mathbf{s} \right] \right\}.$

Proof of Theorem 1

Let the encoder \mathcal{E}_j and the decoder \mathcal{D}_j for \mathcal{C}_j be Algorithm 1 and Algorithm 2, respectively. By definition, $\mathbf{c}' \ge \mathbf{s}'$. Moreover, if $s_i = s'_i$, then $c_i \ge s_i = s'_i$, so $c_i = c'_i$. As a result, $d(\mathbf{c}, \mathbf{c}') \le j$.

In Algorithm 2, the decoder \mathcal{D} of \mathcal{C} is directly used for decoding \mathcal{C}_j . As $\mathbf{y} \ge \mathbf{s}'$, surely $\mathbf{y} \ge \mathbf{s}$. Moreover, we can write $\mathbf{y} = \mathbf{c} + (\mathbf{c}' - \mathbf{c} + \mathbf{e})$. As shown above, $wt(\mathbf{c}' - \mathbf{c}) \le j$, and so $wt(\mathbf{c} - \mathbf{c}' + \mathbf{e}) \le t$. As a consequence, $\mathcal{D}(\mathbf{y}) = \mathbf{m}$.

Algorithm 1 - Encoder \mathcal{E}_j

Input: $(\mathbf{m}, \mathbf{s}') \in \mathcal{M} \times \Sigma^{(j)}$.

- **1**. Determine $\mathbf{s} \in \Sigma$ such that $d(\mathbf{s}, \mathbf{s}') \leq j$ and $\mathbf{s}' \geq \mathbf{s}$.
- 2. Let $\mathbf{c} = \mathcal{E}(\mathbf{m}, \mathbf{s})$.
- 3. Define $\mathbf{c}' = \mathcal{E}'_j(\mathbf{m}, \mathbf{s}')$ as $c'_i = \max(c_i, s'_i)$ for $i \in [n]$.

Output: Codeword $\mathbf{c}' \in \mathbb{F}_q^n$.

Conclusion

Treating some of the partially stuck cells as erroneous cells can decrease the required redundancy for some parameters using Theorem 6. Lemma 1 and Lemma 2 improve upon Theorem 6 (i.e. see the perfectly matched dotted-orange and dashed-red plots for u = 19).

and $q = 2^3$ in [4, Theorem 11], Theorem 1, Lemma 1 and Lemma 2.

References

[1] G. W. Burr et al., "Phase change memory technology," J. Vac. Sci. Technol. B, vol. 28, no. 2, pp. 223–262, 2010.
[2] C. Heegard, "Partitioned linear block codes for computer memory with 'stuck-at' defects," IEEE Trans. Inf. Theory, vol. 29, no. 6, pp. 831–842, Nov. 1983.
[3] A.Wachter-Zeh and E. Yaakobi, "Codes for Partially Stuck-At Memory Cells," IEEE Transactions on Information Theory, vol. 62, no.

[3] A.Wachter-Zeh and E. Yaakobi, "Codes for Partially Stuck-At Memory Cells," IEEE Transactions on Information Theory, vol. 62, no.
2, pp. 639–654, February 2016.

[4] H. A. Kim, S. Puchinger, L. Tolhuizen, A. Wachter-Zeh, 'Coding and Bounds for Partially Defective Memory Cells'. arXiv, 2022.

Technische Universität München TUM School of Computation, Information and Technology Institute for Communications Engineering

