
Trading Partially Stuck Cells with Errors
Haider Al Kim1,2, Sven Puchinger3, Ludo Tolhuizen4, Antonia Wachter-Zeh1

1Institute for Communications Engineering, Technical University of Munich (TUM), Germany
2Department Electronic and Communications Engineering, University of Kufa (UoK), Iraq

3Hensoldt Sensors GmbH, 89077 Ulm, Germany
4Philips Research, High Tech Campus 34, Netherlands

Email: haider.alkim@tum.de, Sven Puchinger <mail@svenpuchinger.de>, ludo.tolhuizen@philips.com, antonia.wachter-zeh@tum.de

Abstract—This work considers coding for partially stuck mem-
ory cells. Such memory cells can only store partial information
as some of their levels cannot be used due to, e.g., wearout. First,
we present 2µ-ary partially stuck cell code construction (over
the finite field F2µ , where integer µ > 1) for masking partially
stuck cells while correcting substitution errors. "Masking" finds a
word whose entries coincide with writable levels at the (partially)
stuck cells. Then we investigate a technique where the encoder,
after a first masking step, introduces errors at some partially
stuck positions of a codeword in order to satisfy the stuck-at
constraints. It turns that treating some of the partially stuck
cells as erroneous cells can decrease the required redundancy
for some parameters, e.g., by Lemma 2.

Index Terms—flash memories, phase change memories, non-
volatile memories, defective memory, (partially) stuck cells, error-
correcting codes, Gilbert-Varshamov bound

I . I N T R O D U C T I O N

The demand for reliable storage solutions, particularly for
non-volatile memory NVM, such as flash memory and phase
change memories (PCMs) for different applications, is steadily
increasing. Non-volatile memory is a memory that stores
information even when powered off. These multilevel devices
provide permanent storage, a rapidly extendable capacity, faster
data access, lower power consumption, and enhanced physical
resilience [1]. A primary issue with NVMs technology is that
its read channel degrades significantly over time, resulting in
unacceptable reliability. Capturing and releasing charges in
flash memory during programming and erasing causes damage,
e.g., wear-out in the form of charge trapping in the oxide and
interface states [2] and [3]. The trap (the stuck-at; see [4] and
[5]) prohibits a cell from switching its level, although new
charges are injected or removed from this cell.

On the other hand, the key characteristic of PCM cells
is that they can switch between an amorphous state and a
crystalline state. PCM cells may become unreliable (also called
defective or stuck [6] and [7]) if they fail to switch their states.
This occasionally happens due to the cooling and heating
processes of the cells. Thus, they can only hold a single phase.
In multi-level PCM cells, failure may occur at a position in
either extreme states or in the partially programmable states
of crystalline.

This deterioration can be handled at the system-level channel
codes. Employing error correction schemes for unreliable
memories dates back to the 1970s [8]. For NVMs devices,
the case when cells are partially stuck at level 1 is particularly
important. For instance, traps at level 1 mean no demand
for mandatory erases that result in faster degradation in flash
memories. For multi-level PCMs, it means that a cell can reach
all crystalline sub-states but cannot reach the amorphous state.
The suggested mechanism to deal with these defective memory
cells is called masking. The "masking" process determines
suitable codewords that regard the writable levels in the
partially stuck positions. Due to the linearity, more than one
codeword can represent the same message to recover from
(partially) stuck-at errors. That is, for any position indexed

as partially stuck-at, multiple possible values (equal or higher
than) the corresponding stored values can be applied. Despite
successfully masking the partially stuck positions [4], the
storing process might fail to present a word that can be
appropriately written to that memory due to substitution errors
(i.e., caused by inter-cell interference noise, or other noise
disturbance [1]), or the reading process might be unsuccessful
[9].

I I . O U R C O N T R I B U T I O N

In this paper, we combine the method of the reduced
redundancy necessary for masking from [4] with the capability
to correct substitution errors from [5]. Compared to the
conventional stuck-cell case in [5], we reduce the redundancy
necessary for masking, similar to the results in [4], and even
reduce further compared to [4, Construction 5]. We also show
that treating some partially stuck cells as erroneous cells
can decrease the required redundancy for some parameters.
Because of space limitations we skip all proofs and redirect
the interested reader to see them in [11]. Our focus is on long
codes over small alphabets, i.e., the code length n is larger
than the field size q. Otherwise, one could instead mask by a
code of length n < q (by using, e.g., [10]).

I I I . P R E L I M I N A R I E S

A. Notations

For a prime power q, let Fq denote the finite field of order
q and Fq[x] be the set of all univariate polynomials with coef-
ficients in Fq . For g, f ∈ Z>0, denote [f] = {0, 1, . . . , f − 1}
and [g, f] = {g, g+1, . . . , f−1}. As usual, an [n, k, d]q code
is a linear code over Fq of length n, dimension k and minimum
(Hamming) distance d. The (Hamming) weight wt(x) of a
vector x ∈ Fn

q equals its number of non-zero entries. We fix
throughout the paper a total ordering “≥” of the elements of Fq

such that a ≥ 1 ≥ 0 for all a ∈ Fq \ {0}. So 0 is the smallest
element in Fq, and 1 is the next smallest element in Fq. We
extend the ordering on Fq to Fn

q : for x = (x0, . . . , xn−1) ∈ Fn
q

and y = (y0, . . . , yn−1) ∈ Fn
q , we say that x ≥ y if and only

if xi ≥ yi for all i ∈ [n].

B. Definitions

1) Defective and Partially Defective Cells: A cell is called
defective (stuck-at level s), if it can only store the value s.
A cell is called partially defective (partially-stuck-at level s),
if it can only store values which are at least s. Note that a
cell that is partially defective at level 0 is a non-defective cell
which can store any of the q levels and a cell that is partially
defective at level q − 1 is a (fully) defective cell.

2) (n,M)q(Σ, t) PSMC: Let Σ ⊂ Fn
q define the states of

a memory. For non-negative integer t, a q-ary (Σ, t)-partially-
stuck-at-masking code C of length n and size M is a linear
coding scheme consisting of a message set M of size M , an
encoder E and a decoder D satisfying:

1) The encoder E is a mapping from M × Σ to Fn
q such

that for each (m, s) ∈ M× Σ, E(m, s) ≥ s,
2) For each (m, s) ∈ M × Σ and each e ∈ Fn

q such
that wt(e) ≤ t and E(m, s) + e ≥ s, it holds that
D(E(m, s) + e) = m.

If Σ = {s ∈ {0, 1}n | wt(s) ≤ u}, we say q-ary (u, 1, t)
PSMC. In this special case, the partially stuck-at condition
means that the output of the encoder is non-zero at each
position of the support ϕ of s.

I V. C O D E S F O R (PA R T I A L LY) D E F E C T I V E
M E M O R I E S

Construction 1. Let µ > 1. Suppose G is a k × n generator
matrix of an [n, k, d]2µ code C of the form

G =

H0

G1

x

 (1)

where
1) H0 ∈ Fl×n

2 is a parity check matrix of an [n, n− l, d0]2
code C0,

2) G1 ∈ F(k−l−1)×n
2µ ,

3) x ∈ F1×n
2µ has Hamming weight n.

From the code C, a PSMC can be obtained, whose encoder and
decoder are shown in [11, Algorithm 5] and [11, Algorithm 6].

Theorem 1. The coding scheme in Construction 1 is a 2µ-
ary (2µ−1d0− 1, 1, ⌊d−1

2 ⌋) PSMC of length n and cardinality
2µ(k−l−1)2l(µ−1).

V. PA R T I A L M A S K I N G O F PA R T I A L LY S T U C K
M E M O RY C E L L S

Proposition 1. If there is an (n,M)q(u, 1, t) PSMC, then for
any j with 0 ≤ j ≤ t, there is an (n,M)q(u + j, 1, t − j)
PSMC.

We generalize the above proposition to general Σ (Theo-
rem 2).

Theorem 2. Let Σ ⊂ Fn
q , and assume that there exists an

(n,M)q(Σ, t) PSMC C. For any j ∈ [t], there exists an
(n,M)q(Σ

(j), t− j) PSMC Cj , where

Σ(j) =
{
s′ ∈ Fn

q | ∃s ∈ Σ [d(s, s′) ≤ j and s′ ≥ s]
}
.

Let the encoder Ej and the decoder Dj for Cj be Algorithm 1
and Algorithm 2, respectively.

Algorithm 1: Encoding

Input: (m, s′) ∈ M× Σ(j).
1 Determine s ∈ Σ such that d(s, s′) ≤ j and s′ ≥ s.
2 Let c = E(m, s).
3 Define c′ = E ′

j(m, s′) as c′i = max(ci, s
′
i) for i ∈ [n].

Output: Codeword c′.

Algorithm 2: Decoding
Input: Received y = c′ + e where wt(e) ≤ t− j and

y ≥ s′

1 Message m = D(y)
Output: Message vector m

We can improve on Theorem 2 for Construction 1 giving
Lemma 1.

Lemma 1. Given an [n, k, d]q code as defined in Construc-
tion 1, then for any j such that 0 ≤ j ≤ ⌊d−1

2 ⌋, there is a
2µ-ary (2µ−1(d0 + j) − 1, 1, ⌊d−1

2 ⌋ − j) PSMC of length n
and size qk−l−1.

In the following lemma, we use another approach for
introducing errors in order to satisfy the stuck-at conditions.

Lemma 2. Given an [n, k, d]q code containing a word of
weight n, for any j with 0 ≤ j ≤ ⌊d−1

2 ⌋, there is a q-ary
(q − 1 + qj, 1, ⌊d−1

2 ⌋ − j) PSMC of length n and size qk−1.

V I . C O M PA R I S O N S G I L B E R T– VA R S H A M O V- T Y P E
B O U N D S

For Construction 1, we have derived Gilbert–Varshamov-type
bound in [11, Theorem 11]. We compare the direct application
of [11, Theorem 11] with the exchange of a one error correction
ability with a single masking capability of a partially stuck
cell by Theorem 2 that further compared to Lemma 1 and
Lemma 2 as shown in Figure 1.

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Errors (t)

R
at

e
(R

)

[11, Theorem 11] (u, t) : u = 8, . . . , 11

[11, Theorem 11] (u, t) : u = 12, . . . , 15

[11, Theorem 11] (u, t) : u = 16, . . . , 19

[11, Theorem 11] (u, t) : u = 20, . . . , 23

[11, Theorem 11] (u, t) : u = 24, . . . , 27

Theorem 2 (u+ 1, t− 1) : u = 19

Theorem 2 (u+ 1, t− 1) : u = 23

Theorem 2 (u+ 1, t− 1) : u = 27

Lemma 1 (u+ 4, t− 1) : u = 19

Lemma 2 (u+ 8, t− 1) : u = q − 1

Figure 1. The achievable rates R = 1
n
log23 M of GV bounds for different

u, and t for n = 200 and q = 23 in [11, Theorem 11]. The solid plots are
the rates from the derived GV like bound and the dotted lines are the rates
after trading u + 1, t − 1 by Theorem 2. Trading one correctable error by
Lemma 1 and Lemma 2 increases u by 2µ−1 and 2µ, respectively. Lemma 2
gives slightly higher rates for all t ≤ 50 while treating the same number
of u cells compared to the corresponding curves from [11, Theorem 11],
Theorem 2, and Lemma 1.

R E F E R E N C E S

[1] L. Dolecek and F. Sala. Channel Coding Methods for Non-Volatile
Memories. 2016.

[2] P. OLIVO, B. RICCO, and E. SANGIORGI. “High-field-induced voltage-
dependent oxide charge”. English. In: Applied physics letters (1986). issn:
0003-6951.

[3] C. Monzio Compagnoni, M. Ghidotti, A. L. Lacaita, A. S. Spinelli, and A.
Visconti. “Random Telegraph Noise Effect on the Programmed Threshold-
Voltage Distribution of Flash Memories”. In: IEEE Electron Device Letters
30.9 (2009), pp. 984–986. doi: 10.1109/LED. 2009.2026658.

[4] A. Wachter-Zeh and E. Yaakobi, "Codes for Partially Stuck-at Memory
Cells," IEEE Trans. Inf. Theory, vol 62, no. 2, pp.639-654, 2016.

[5] C. Heegard, “Partitioned Linear Block Codes for Computer Memory with
’Stuck-at’ Defects,” IEEE Trans. Inf. Theory, vol. 29, no. 6, pp. 831–842,
1983.

[6] B. Gleixner, F. Pellizzer, and R. Bez, “Reliability Characterization of
Phase Change Memory,” in 2009 10th Annual NVMTS. IEEE, 2009, pp.
7–11.

[7] A. Pirovano, A. Redaelli, F. Pellizzer, F. Ottogalli, M. Tosi, D. Ielmini, A.
L. Lacaita, and R. Bez, “Reliability Study of Phase-Change Nonvolatile
Memories,” IEEE Trans Device Mater Reliab, vol. 4, no. 3, pp. 422–427,
2004.

[8] A. Kuznetsov and B. Tsybakov. “Coding for memories with defective
cells,” in: (in Russian) Problems Inf. Transmiss. Vol. 10. 2. 1974, pp.
52–60.

[9] A. Solomon and Y. Cassuto. “Error-correcting WOM codes: Concatena-
tion and joint design”. In: IEEE Trans. Inf. Theory 65.9 (Sept. 2019), pp.
5529–5546.

[10] G. Solomon. “A Note on Alphabet Codes and Fields of Computation”.
In: Inf. Control. 25 (1974), pp. 395–398.

[11] H. Al Kim, S. Puchinger, L. Tolhuizen, and A. Wachter-Zeh, “Cod-
ing and Bounds for Partially Defective Memory Cells,” (submitted
to) Design, Code and Cryptography, 2022. Arxiv version is here:
https://arxiv.org/pdf/2202.07541.pdf

