Enabling Distance-based Addressing in
Non-Volatile Memory systems

Ananth Krishna Prasad, Rajeev Balasubramonian, Mahdi Nazm Bojnordi
School of Computing, University of Utah

] I. INTRODUCTION
Nearest Neighbor search (NNS) is a fundamental problem

in computer science. NNS with lower dimensionsal data
uses tree-based data structures such as K-D trees, where the
aggressiveness of pruning can be tuned to either do exact
(NNS) or approximate nearest neighbor searches (ANNS).
Unfortunately, as the dimensionality of data increases, the
efficiency of pruning drops sharply in case of NNS. This
means that for high-dimensional data, it is often required to
visit every single data point in the dataset to identify the closest
k points. Linear scan is the most bandwidth-efficient approach.

It turns out that most of the present-day applications of
nearest neighbors can tolerate some degree of loss in accuracy,
leading to the emergence of ANNS as a solution in various
database applications [1], [5], [6]. The proposed indexing
algorithms for ANNS can be classified into 3 categories -
Trees, Graphs, and Compression [4]. Indexing algorithms have
exposed a design space trade-off between the accuracy of the
ANNS and the complexity of computation. Such algorithms
are less bandwidth-intensive compared to the brute force ap-
proach due to dataspace pruning. However, there are multiple
sources of inefficiency in the application of such indexing
algorithms to ANNS. 1) The choice of the indexing algo-
rithm depends on different factors such as working-set size,
dimensionality, accuracy requirements, and the target distance
metric. 2) Indexing algorithms incur memory indirection in the
form of pointer chasing, which impacts the processing latency.
3) Most importantly, current applications work with Billion-
scale data, exceeding sizes of 100s of GB. This necessitates
using either distributed servers or SSDs to store the com-
plete working set, thereby exacerbating latency inefficiency
by adding factors such as SSD roundtrip delays/inter-node
communication.

Given that ANNS is inherently data-parallel, and almost
all of the previously mentioned competing algorithms are
limited by pointer-chasing, it is a good fit for exploiting
processing-in-memory (PIM) primitives. However, given the
many parameters in ANNS, it is important to design a PIM
framework that is general enough to target a large algorithm
space. To this end, we make the following contributions:

o We propose Distance Addressable Memory (DAM), an
algorithm-hardware co-design approach to perform
in-memory search space pruning depending on a given
distance metric to shortlist and access “similar” data-
points within a dataset to a given target point. The 1T1R-
based RAM performs search space pruning while keeping

the data in place, thereby incurring no pointer-chasing
latency overheads while maintaining high bandwidth uti-
lization. The PIM module efficiently creates a short-list of
candidates, which are then read out to the host processor
to further narrow down nearest points.

o We propose an adaptive parameterization technique,
which helps build the data structure for search-space
pruning on-the-fly within memory. The parameters de-
fine the minimum distance to be searched iteratively
across every single dimension. This also exposes the
accuracy v/s latency design space to the users.

« Initial results across different parameters show competing
performance with a State-of-the-art (SOTA) accelerator
for Billion-Scale similarity search applications [2] while
exposing to the user a larger design space. We also show
an order of magnitude improvement over a state-of-the-
art software library.

II. DISTANCE-ADDRESSABLE MEMORY OVERVIEW

> Processor Cores D-dim Query

= Software
o On-chip Cache [User-Defined b,m]

DAM 0 DAM 1

Distance-Aware Pruning] Hardware

Quantized Queries

DIMM

Fig. 1. Overview of the proposed system.
Figure 1 shows an overview of the proposed system. Each

DIMM contains multiple DAM chips, capable of perform-
ing distance-aware pruning. The user space contains the D-
dimensional queries, for which similar points are required to
be found from the memory. Two user-defined parameters-b, m
(defind shortly) dictate the quality of pruning. b, m are used
in extracting the Quantized Query which is used in the search.
The quantized query is written to the quantized query buffer
(QQB) within the DIMM, which is used as the query for the
current iteration of PIM. The two subsections below propose
an algorithm to extract the quantized queries using b, m and
thereby perform search, and explain how the algorithm is
implemented using PIM primitives respectively.
A. Proposed Algorithm

The proposed algorithm for multi-dimensional data pruning
is inspired by our prior work on data ranking [3] and is shown
in algorithm 1. Assume a D-dimensional dataset S and query
T, with n bits used to represent each dimension. The quantized
query 7/ and dataset S/ are generated by applying a right
bit-shift of b on each dimension d of 7 and S. This can be
visualized as generating a (n - b) bit key (p/) for each datapoint

(p). Each key corresponds to a bucket with 2° values. m
defines the number of buckets to be searched in either direction
of the target bucket 7,/ within each d. All datapoints falling
within the search range across all D dimensions belong to the
candidate set C.

Algorithm 1 function MultiDimDataPrune(b, m)

T < query, S < {all datapoints}, D <+ {all dims}
C—0, 71 T17>>b,8'+S>>D
: for all pr € Sr do
for all d € D do
if |pd/ — Td/I < m then
C+ CU{p}

AN A >

B. Proposed Hardware, Control, and Results

The proposed memory array is illustrated with a small
example in Figure 2. The array considers a configuration
of n = 3 and shows 3 3-dimensional datapoints, with
b = 1. There are D = 3 entries within the QQB, with
each entry having 2m + 1 different masks (/m bins in each
direction of the target-bin, plus the target-bin), and the QQB
is shared across different arrays. The rightmost b = 1 bits
within each QQB entry are masked out, denoted by bitlines
outside the search range. The address mapping ensures that
every datapoint within an array is bit-aligned. The search in-
hardware proceeds in a dimension-serial data-parallel fashion.
Each dimension search proceeds in a bit-serial fashion. The
bitline is activated based on the QQB mask corresponding
to the specific bit-location, which reads the value into the
selectline. A comparison occurs between the corresponding
bit-location within the QQB key and the seleclines across all
rows. If a specific bit-location has a mismatch in a row, the
stream detection logic deactivates the row and excludes it from
consideration in future iterations. Hence, the stream detection
logic ensures that the select bit stays 1 only if one of the 2m+-1
bins searched for each dimension returns a one, across all
dimensions. This ensures that the hardware follows the same
search algorithm as explained in the previous section.

| Additi Control,,
= -

2D Memristive Array

4

bitline

A AT R P T
EL A A Y Y
Srream/ ,‘<L T v ﬁ v v ' v ﬁ -— Sensing
D(itgc;ico,;' §é;ecr5ir & Z} J Z} 21& s Z} Z} Circuit

T o [QeBKEY]| QQB MASK oriving

Fig. 2. Proposed Memory Array.

After the search is performed across all dimensions, the
select bits denote the rows containing the datapoints forming
our candidate set C. The select bits are accumulated into a
count of the number of active rows present in memory, which
is then read by the on-chip controller through a RAM read
request to a special address. The memory controller then issues
reads corresponding to the total count of active rows in the
memory. Such read requests are unaware of the exact location
of active rows forming C. A priority encoder employed within
the memory selects the data to be read out for each read
request, similar to [3]. The unused commands as part of the

DDR protocol for NVMs are re-purposed (without protocol
changes) to enable the two key operations required within
DAM - (a) write Quantized target values 7/ to QQB (b) Read
final count of candidates from the Memory. The software
maintains a priority queue which stores the top-k candidate
points from C. The proposed memory is also extensible to
newer technologies such as CXL.

FAISS vs ANNA vs DAM

o 10 20 30 a0 50 60 70 80 % 100
RECALL VALUE

ANNA FAISS-CPU —e—DAM-32 DAM-64 —e—DAM-72 —o—DAM-80 —e—DAM-96

Fig. 3. Results of Proposed Approach

The results for BIGANN-1B, a 128-dimension uint8-based
dataset is shown in Figure 3. The graph presents two baselines-
ANNA [2] (H/W accelerator) and FAISS (software on a
CPU). Accuracy (or Recall) here is defined as the portion
of true top 100 datapoints identified by the ANN algorithm.
Each datapoint corresponds to a different configuration. The
different trendlines of DAM correspond to different values of
minimum range (2% x m) to be searched wrt each dimension.
The different datapoints within each trendline correspond to
different combinations of b,m used to achieve the same
minimum range. On average, DAM performs similarly to
ANNA across the best configurations, while giving the same
benefits as ANNA over the FAISS baseline.

While we were unable to improve upon ANNA'’s latency, we
note that DAM has several other advantages. Our approach
is more scalable than ANNA due to the in-place nature of
computation. It allows tunable b and m that enable iterative
ANN without having to rebuild data structures, as is required
in the baselines. The current iteration of DAM is limited by
its inefficient select-bit based pruning mechanism. As part of
follow-up work, we are exploring modifications to hardware
that allow DAM to apply additional levels of pruning, rather

than just a bit-based binary pruning.
EFERENCES

[1] N. Hasanzadeh and Y. Forghani, “Improving the accuracy of m-distance
based nearest neighbor recommendation system by using ratings vari-
ance.” Ingénierie des Systémes d’Information, vol. 24, no. 2, 2019.

[2] Y. Lee, H. Choi, S. Min, H. Lee, S. Beak, D. Jeong, J. W. Lee, and T. J.
Ham, “Anna: Specialized architecture for approximate nearest neighbor
search,” pp. 169-183, 2022.

[3] A. K. Prasad, M. Rezaalipour, M. Dehyadegari, and M. N. Bojnordi,
“Memristive data ranking,” in 2021 IEEE International Symposium on
High Performance Computer Architecture (HPCA). 1EEE, 2021.

[4] S. J. Subramanya, F. Devvrit, H. Simhadri, R. Krishnawamy, and
R. Kadekodi, “Diskann: Fast accurate billion-point nearest neighbor
search on a single node,” Advances in Neural Information Processing
Systems, vol. 32, pp. 13771-13781, 2019.

[5] L. Xiong, C. Xiong, Y. Li, K.-F. Tang, J. Liu, P. Bennett, J. Ahmed, and
A. Overwijk, “Approximate nearest neighbor negative contrastive learning
for dense text retrieval,” arXiv preprint arXiv:2007.00808, 2020.

[6] J. Zhang, Y. Yao, and B. Deng, “Fast and robust iterative closest point,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021.

