
Security in Era of Persistent Memory
Naveed Ul Mustafa 1, Yuanchao Xu 2, Xipeng Shen 2 Yan Solihhin 1

1University of Central Florida, Orlando, FL 2North Carolina State University, NC

Introduction

Persistent Memory:

Higher density

Non-volatility

Lower static power consumption

Byte addressability

Access latencies are not much slower

Persistent Memory Object (PMO):

An abstraction to hold persistent pointer-rich data structures in memory without file-backing.

Managed by OS (namespace and permissions)

Motivation

PMO programming model allows PMO sharing over time.

This breaks inter-process isolation, making shared PMOs a new security vulnerability.

Previous work focuses on making unauthorized accesses to PMOs difficult for the process

accessing the PMO.

Research Problem

Avulnerable processwith legit PMOaccess can be used byan attacker to launch a cross-process

attack on a victim via shared PMO. In doing so, a shared PMO becomes security vulnerability.

Contributions

1. Discuss security implications of PMOs.

2. Present new threat model and sample attacks stemming from PMO programming model.

3. Potential defenses against PMO based cross-process attacks.

Background

PMO Programming Interface:

attach()/detach() maps/unmaps a PMO to/from address space of a user process.

Once attached, PMO data is accessible via load/store instructions.

psync() persists a modified PMO in crash-consistent way.

PMO Sharing:

A PMO can outlive its creator process.

A PMO can be attached by multiple processes over time.

Simultaneous multiple readers.

Write attach must be exclusive to other readers/writers.

Security Implications of PMOs

1. PMO corruption is persistent.

2. Relaunching a process does not erase effect of PMO corruption on it’s execution.

3. PMO Corruption by one process can affect any sharing process.

4. Attacker can incrementally determine target data location for corruption across different

runs.

5. Attractive target for manipulation due to pointer-rich nature of PMOs.

6. PMO accesses (via load/store) are not trapped by OS and hence not protected.

Threat Model

Two user processes, payload and victim, share a PMO over time.

Victim has no memory safety vulnerabilities but the payload does.

Adversary’s goal: Use payload to compromise victim process.

Adversary’s knowledge:
1. A PMO is shared.

2. Data structure type.
3. PMO layout

Trusted system software (i.e., OS).

Pointer Classification

Direction-based classification:

1. VM2PM: Necessary for normal operation of PMO (e.g., reading PMO data). Such pointers can

be dereferenced only when PMO is attached.

2. PM2VM: Should not be permitted as they are not valid across process runs.

3. PM2PM:
Intra-PMO Pointer: Points within the same PMO and are essential to build data structures.

Inter-PMO pointer: Points to location in a different PMO. Permits simultaneous access and reduction of

exposure window.

0

1
2
3

N

Hash Table
∅

∅

∅
.
.

∅

∅

attach()
PMO1

detach()
PMO1

T1 T2

PMO1

(a)

0

1
2
3

N

Hash Table
∅

∅

.

.
∅

attach()
PMO1

detach()
PMO2

T1 T2

PMO1

detach()
PMO1

attach()
PMO2

PMO2

PMO4

∅
∅

PMO3

(b)

Figure 1. Hash table and linked list placed in a) same PMO and b) different PMOs.

Address-based pointer classification:

1. Absolute pointer: Contains virtual address
Fast to dereference

Costly space layout randomization.

Shared PMOs must be mapped to same virtual address range in all sharing processes.

2. Relative Pointers: Contains combination of PMO ID and offset
Translation table lookup is needed.

PMO relocation is less expensive.

Attack Types

Control-data attacks: alter target program’s control data (e.g., return address and function

pointer) to execute injected malicious code or stitched gadgets.

A B C
DSR T

H

PMO

(a) PMO layout

Victim Process

fp

N

M

(b) Step 1

A B C
DSR T

H

fp-Δ M
PMO

(c) Step 2

A B C
DSR T

H

fp M
PMO

(d) Step 3

//C points to fp-Disp
last_node=*T;
first_node=*H;
//makes FP point to M
last_node ->fd=first_node ->fd;
*H=first_node ->fd;

(e) Free list consolidation code

Victim Process

fp
N

M

(f) Step 4

Figure 2. Steps of PMO-based cross-process/run pointer redirection attack.

Non-control-data attacks: depend on specific semantics of target application and the source

code to corrupt variety of application data such as configuration data, user identification data

and decision-making data.

A B C
DSR T

H

(a) PMO with skip list and free list.

A B C
T∅
∅

(b) DSR & H set to null.

Figure 3. PMO-based cross-process/run denial of service attack.

A B C
DSR T

H

0

0 2

4

4 6

8

(a) PMO with skip list and free list.

A B C
DSR T

H

0

0 2

4

4

8

9

(b) PMO data corruption.

Figure 4. PMO-based attack to corrupt decision-making data.

Possible Defenses

PMO Space Layout Randomization (PSLR): If enabled, randomizes the addresses (e.g., of fp

and M in Fig. 2) making it hard for attacks to succeed.

Data Execution Prevention (DEP) prevents code injection i.e. M in Fig. 2.

Stronger defense is needed if PSLR or DEP are breached.

Detection and Foiling the PMO-based attacks:

VictimVictim Payload
Time
line

Step 1 Step 2 Step 3 Step 4

Address of fp and M must not change

Window to verify PMO integrity

Window to 
rollback PMO

Window to 
block victim

Figure 5. Opportunities for detecting and foiling an attack

Table 1. Summary of PMO attacks

Attack Assumptions Detection strategy

Pointer redirection to

out-of-context code

No PSLR

PM2NVM pointers

are permitted

Topology

verification

Pointer redirection to

injected code

No PSLR

No DEP

PM2NVM pointers

are permitted

Topology

verification

Denial of service
Hash re-computation

and comparison

Corrupting

decision-making data

Data

invariance checking

References

[1] Naveed Ul Mustafa, Yuanchao Xu, Xipeng Shen, and Yan Solihin. Seeds of seed: New security challenges for persistent memory. In

2021 International Symposium on Secure and Private Execution Environment Design (SEED), pages 83–88. IEEE, 2021.

Acknowledgement

This work is supported in part by ONR through award N00014-20-1-2750 and NSF through

award CNS-1717425.

http://nvmw.ucsd.edu 14th Annual Non-Volatile MemoriesWorkshop, University of California, San Diego —March 13-14, 2023 unknown.naveedulmustafa@ucf.edu

http://nvmw.ucsd.edu
mailto:unknown.naveedulmustafa@ucf.edu

