CapOS: Capacitor Error Resilience for Energy Harvesting Systems

Jongouk Choi
University of Central Florida

I. INTRODUCTION

Energy-harvesting devices are a desirable replacement for
battery-powered IoT. They utilize a capacitor as an energy
buffer instead of a battery, gather ambient energy (such as
RF radiation) there, then opportunistically use the buffered
energy to power the devices. However, because ambient energy
sources are unstable, energy harvesting systems frequently
experience power outages during which all volatile data are
destroyed, which causes program integrity to be compromised.
In order to solve the issue, they use nonvolatile memory
(NVM), which requires less power than a cache, as main
memory. They also feature some sort of recovery support to
back up and restore volatile data, such as registers, across a
power outage.

Energy harvesting systems use a capacitor-backed just-in-
time (JIT) checkpoint mechanism for recovery, similar to
Intel’s ADR memory subsystem [1]. They continue to monitor
the level of buffered energy in the capacitor with a voltage
monitor, and they checkpoint volatile data (registers) into
NVM when a power loss is imminent. Then, in the wake of
the outage, they restore the checkpointed registers from NVM
and resume the program from the point of power interruption,
with no rollback—a process known as roll-forward recovery.
In this way, the JIT checkpointing ensures correct recovery
and gives the systems an illusion that the volatile data are
persistent across power failure.

Unfortunately, we discovered that capacitor degradation can
incapacitate the capacitor-backed JIT checkpointing. Because
of the frequent power outages, the capacitor is repeatedly
charged and discharged, which is particularly stressful for the
capacitor and accelerates its degradation. Furthermore, because
energy harvesting systems are used as IoT devices in a variety
of settings, their capacitors are frequently subjected to other
stressful conditions, such as high humidity/temperature. Under
these conditions, the capacitor degrades significantly over
time and eventually becomes incapable of buffering enough
energy for JIT checkpointing. When the degraded capacitor
has insufficient buffered energy, energy harvesting systems
fail the checkpointing, corrupting/losing volatile data (without
providing any further service) across power failure; we refer
to this as a capacitor error.

This paper introduces CapOS, a lightweight operating sys-
tem (OS)-driven capacitor error resilience solution, to deal
with the capacitor error. Depending on the condition of the
capacitor, CapOS operates in either (1) normal mode or
(2) safe mode. When the capacitor is not degraded, CapOS
operates in normal mode, with JIT checkpointing acting as a

Hyunwoo Joe

Changhee Jung

ETRI Purdue University

o |*® cap.l *—x cap.2 e -e cap.3 cap.4
880

oc 2 R L L

o8 —41 o s

8% & g

ch_jc% _%(2),

e S o checkpoint failure T

a 0 1 2 3 4 5 6 7

days

Fig. 1: Capacitor degradation in energy harvesting systems

roll-forward recovery mechanism. When a capacitor error is
detected, CapOS enters a safe mode that performs a rollback
recovery with JIT checkpointing disabled; while the degraded
capacitor is idle, it restores the original capacitance on its own
due to the resilient nature of the capacitor. When the capacitor
is fully recovered, CapOS returns to normal mode. In sum,
CapOS switches between the two modes when a capacitor
error is detected.

II. BACKGROUND AND MOTIVATION: CAPACITOR ERROR

Capacitor Error: To analyze the capacitor error in energy
harvesting systems, we conducted experiments with a roll-
forward recovery solution, Samoyed [2], having a ImF su-
percapacitor as energy buffer on MSP430FR5994; we tested
four different 1mF supercapacitors (e.g., cap.1~4). For ex-
periments, we developed the power generator board with
MSP430FR5969 to incur power failures; the power generator
supplies voltages to our target board through GPIO pins. Then,
we mimicked energy harvesting situation by injecting square
wave voltages into the target board.

From the experiments, we found that the capacitors gradu-
ally lose its original capacitance by more than 10% as shown
in fig. 1 within seven days, which could cause a JIT checkpoint
failure corrupting data in NVM, i.e., capacitor error. For
further analysis, we also tested our real energy harvesting
board (TIDA-00588), which is equipped with onboard solar
cells with a 47mF capacitor as an energy buffer in a real
harvesting environment. We found that the capacitance could
be decreased by up to 50% within a year. Consequently,
with the degraded capacitor, all the prior works suffer the
capacitor error ensuring neither correct recovery (data loss)
nor forward progress execution. Therefore, we believe there is
a compelling need to address the capacitor error for practical
energy harvesting systems.

Capacitor Recovery: Although capacitors are degraded in
stressful conditions, a supercapacitor can particularly recover
its capacitance when it is (electrically) isolated thanks to
its self-recovery nature [3]. A prior work demonstrates the
capacitor recovery phenomenon [3] with a recovery model.



To explore the capacitor self-recovery phenomenon in energy
harvesting systems, we intentionally stressed supercapacitors
to be degraded and then, when the capacitor was degraded
by 10%, we electrically isolated them and measured their
capacitance variation over time. Finally, we found that all of
the degraded capacitors could be healed within 2 hours.

III. CAPOS DESIGN

To achieve a lightweight capacitor error resilience solution,
CapOS dynamically detects the capacitor error in a reactive
yet safe way. Since reactive error detection condones the JIT
checkpointing failure corrupting the data, care must be taken
to keep all the registers being checkpointed safe. For this
purpose, CapOS leverages an acknowledgment (ACK) as a
barrier of the JIT checkpointing, i.e., CapOS persists the ACK
after checkpointing all registers in NVM. The insight is that a
capacitor does not become faulty all of a sudden, but instead it
is gradually degraded over time. That is, when the capacitor is
first degraded, the JIT checkpointing only fails to write the last
data, i.e., ACK, to NVM yet succeeds in persisting all registers.
Consequently, if the capacitor error occurs, CapOS can detect
it by checking the ACK in the wake of power failure.

Once the ACK corruption is detected, CapOS switches its
execution mode from normal to safe. In the safe mode, CapOS
disables the JIT checkpoint mechanism since the registers can
eventually be corrupted as the faulty capacitor is further de-
graded. Then, CapOS electrically isolates the faulty capacitor
to restore its original capacitance via the self-recovery nature
of a supercapacitor [3]. To recover from power failure without
JIT checkpointing, the safe mode needs another type of power
failure recovery solution, i.e., rollback recovery.

However, it is a daunting challenge to seamlessly switch
from the roll-forward to the rollback and vice versa. This is
because, unlike the roll-forward recovery, the program should
be partitioned into recoverable regions, the boundary of which
serves as a rollback recovery point in case the following region
is interrupted by power failure. The problem is that although
a capacitor error occurs at any given time, the traditional
rollback recovery schemes cannot achieve seamless mode
change because of their statically fixed region boundaries; they
should enter the safe mode only at the beginning of a region—
which would otherwise miss saving required data (memory
logs and checkpoints) for the rollback recovery—though errors
occur not necessarily at the region boundary.

To correctly enter the safe mode whenever the capacitor
error is detected, CapOS leverages a boundary-free rollback
recovery scheme comprised of timer-based checkpointing and
copy-on-write (CoW) backed with a memory protection unit
(MPU). CapOS can enter the safe mode at any point on which
a recovery point is set with checkpointing all registers and
starting a watchdog timer; upon the expiration of the timer,
which serves as the new recovery point thus checkpointing
the registers, a new checkpoint interval begins with restarting
the timer. In case each interval is power-interrupted, the safe
mode tracks memory updates during the interval using the
MPU and logs the original pages with CoW giving them write

permission—reclaimed at the beginning of an interval—to
restore them with registers and restart the interrupted interval
when power comes back.

When the capacitor is recovered, CapOS returns to the
normal mode. To figure out when to return, CapOS lever-
ages a capacitor recovery time model [3] and dummy JIT
checkpointing. CapOS dynamically measures the capacitor
isolation period and compares it with the model-estimated
time to be taken for the recovery [3]. If the total isolation
time exceeds the estimate, CapOS checks the capacitor by
performing the JIT checkpointing of dummy data. Once the
dummy JIT checkpointing succeeds, CapOS assures that the
capacitor has become reliable and returns to the normal mode.

IV. EVALUATION

We implemented CapOS, measured its throughput, and
compared it to Samoyed (S) [2] and Samoyed with a reactive
detection scheme, i.e., Chinchilla [4] (S+Chin.). We developed
S+Chin as an alternative solution that can run rollback-enabled
binaries [4] but enable the JIT checkpointing mechanism when
the capacitor is stable; if the capacitor fails, the solution
disables JIT checkpointing in the same way that CapOS
does. We ran benchmark applications [4] on each scheme
with collected three power traces from a real RF energy
harvester for analysis. Figure 2 depicts the overall performance
overhead of each solution. CapOS outperforms S+Chin by
4~5x, while S fails to make progress within 30 days.

S @@ S+Chin *— CapOS — S @@ S+Chin +—+ CapOS

— S @@ S+Chin +—* CapOS
3 100

3 100, $ 100

8 §
< sof I 8of 5 80¢
2 60 2 6o 2 6o0f
S 40 S 40p S 40f
o 20 : : i . o 20L.i.: : . : o 0L\ : :
£ htteeeee) o E oltoeee,0ee E ltetes0ee?
15 101520253035404550 15 101520253035404550 15 101520253035404550
Time (days) Time (days) Time (days)
(a) Trace 1 (b) Trace 2 (c) Trace 3

Fig. 2: Performance analysis varying power failure patterns
and recovery solutions

V. SUMMARY

This paper found out that energy harvesting systems can fail
checkpointing their volatile data to NVM due to the problem
of capacitor degradation, which we call a capacitor error. To
address the problem, we introduced CapOS, a lightweight
and effective capacitor resilience solution. Our experiments
demonstrate that CapOS can successfully address the capacitor
error showing 4~5x better throughput compared to a prior
work on average.

REFERENCES

[1] S. Scargall, Programming Persistent Memory. Intel, 2020.

[2] K. Maeng and B. Lucia, “Supporting peripherals in intermittent systems
with just-in-time checkpoints,” in Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation,
pp. 1101-1116, ACM, 2019.

[3] R. Chaari, O. Briat, and J.-M. Vinassa, “Capacitance recovery analysis
and modelling of supercapacitors during cycling ageing tests,” Energy
conversion and management, vol. 82, pp. 37-45, 2014.

[4] K. Maeng and B. Lucia, “Adaptive dynamic checkpointing for safe effi-
cient intermittent computing,” in /3th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18), (Carlsbad, CA), pp. 129—
144, USENIX Association, 2018.



	Introduction
	Background and Motivation: Capacitor Error
	CapOS Design
	Evaluation
	Summary
	References

