Introduction

We present a polar code construction that supports both local and global decoding. Local decoding allows random access to subblocks of the full code block.

1KB	1KB	1KB	1KB
4KB

When local decoding performance is insufficient, global decoding provides improved data reliability. This local-global construction is motivated by practical applications where reduced-latency recovery of subblocks of the coded information is required:

- Advanced multilevel flash memory
- Low-latency wireless communication

A local-global polar decoding architecture is proposed.

- Inner polar codes coupled through a systematic auxiliary polar code. [1]
- Split permutation maps specific systematic message bits to each inner code.

Local-Global LDPC Code [2]

Sub-blocked Tanner graph with 3 subblocks of length 6.

Local check nodes L and joint (global) check nodes J.

Enhanced BP Decoding [3]

Auxiliary code to protect intermediate quality (semi-polarized) bit-channels. Enhanced belief-propagation (EBP) decoding on extended factor graph.

Flexible Length Polar Codes [4]

Augmented polar code with auxiliary polar code. Enhanced BP decoding on extended factor graph. Flexible length polar code via coupling through auxiliary polar code:

- \(R_1 = \frac{K_1}{N_1} \); \(R_2 = \frac{K_2 + N_2}{N_2} \); \(R_3 = \frac{K_3 + N_3}{N_3} \)
- \(R_{\text{total}} = \frac{K}{N} = \frac{K_1 + K_2 + K_3 + N_2 + N_3}{N_2 + N_3} \)

Local-Global Polar Codes

Encoder architecture for local-global polar code.

- Systematic auxiliary code.
- Split permutation respects inner code assignments of \(K_{a1}, K_{a2}, ..., K_{a32} \)

Factor graph for local-global polar decoding.

- Enhanced BP decoding.
- Early stopping rule for coupled codes.

Simulation: Local-Global Decoding with 2,4 Inner Codes

- \(R_{\text{eff}} = 0.5 \).
- Inner codes \(C_{j}, j = 1, 2 \)
 - Code \(C_j \) message size:
 - \(M_j = K_{aj} + K_{bj} = 32 + 480 = 512 \)
 - Code \(C_j \) unfrozen frame size:
 - \(K_j = K_{aj} + P_{aj} = 512 + 32 = 544 \)
 - Code \(C_j \) total frame size:
 - \(N_j = K_j + F_j = 544 + 480 = 1024 \)
 - Systematic auxiliary code \(C_0 \)
 - Code \(C_0 \) rate:
 - \(R_0 = K_a/(K_a + F_0) = 64/128 = 0.5 \)

- \(R_{\text{eff}} = 0.5 \).
- Inner codes \(C_{j}, j = 1, 2, 3, 4 \)
 - Code \(C_j \) message size:
 - \(M_j = K_{aj} + K_{bj} = 64 + 448 = 512 \)
 - Code \(C_j \) unfrozen frame size:
 - \(K_j = M_j + P_{aj} = 512 + 64 = 576 \)
 - Code \(C_j \) total frame size:
 - \(N_j = K_j + F_j = 576 + 448 = 1024 \)
 - Systematic auxiliary code \(C_0 \)
 - Code \(C_0 \) rate:
 - \(R_0 = K_a/(K_a + F_0) = 256/512 = 0.5 \)

References