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INTRODUCTION
We present a polar code construction that sup-
ports both local and global decoding. Local de-
coding allows random access to subblocks of the
full code block.
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When local decoding performance is insufficient,
global decoding provides improved data reliabil-
ity. This local-global construction is motivated by
practical applications where reduced-latency re-
covery of subblocks of the coded information is
required:

• Advanced multilevel flash memory

• Low-latency wireless communication

A local-global polar decoding architecture is pro-
posed.

• Inner polar codes coupled through a sys-
tematic auxiliary polar code. [1]

• Split permutation maps specific systematic
message bits to each inner code.

FLEXIBLE LENGTH POLAR CODES [4]
Augmented polar code with auxiliary polar code.
Enhanced BP decoding on extended factor graph.
Flexible length polar code via coupling through
auxiliary polar code:
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• Rtotal =
K
N = K1+K2+K3

N2+N3

Finally, for N2 �= N3, implementing flexible length codes
become possible. Tab. I shows the full code parameters for one
example of the proposed scheme (setup 2). The effective code
length of setup 2 is N = 3072 bits. Fig. 7 shows that setup 2
outperforms the conventional polar code under BP decoding
in terms of BER, even with a shorter code length N . The
effect of the auxiliary polar code on the BER is shown in
Fig. 7: keeping the individual polar codes of lengths N2, N3

separate (green BER curve) is much worse than connecting
them through the auxiliary polar code (dotted red curve), i.e.,
the information flow in the iterative decoder through coupling
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Figure 5: Encoder of the proposed flexible length code.
The proposed setup (setup 2) saves a noticeable compu-

tational complexity when compared to the conventional BP
decoding of the N = 4096 polar code, as can be seen in Tab.
II.

The above setup can be used to produce modified polar
codes with flexible codeword lengths N �= 2n, mitigating the
code length constraint due to the used kernel (Arıkan’s 2× 2

kernel F =

[
1 0
1 1

]
[1]). This may prove to be useful when

proposing polar codes, or, more precisely, “polar-like” codes
for communications standards.

The same concept can be used to couple an arbitrary number
of inner polar codes, which we refer to as “parallel augmen-
tation”. Thus, large codes can be built based on small polar
codes, e.g., four inner polar codes (5 ≤ i ≤ 8) are coupled
with four short auxiliary polar codes (1 ≤ i ≤ 4) in a ring
like structure, as shown in Fig. 8. Tab. I shows the full code
parameters of this setup (setup 3).

Finally, Fig. 9 shows a BER performance comparison
between the N = 4096 polar code under conventional BP
decoding and setup 3 (note that setup 3, also, has an ef-
fective codeword length of N = 4096). Although the BER
performance of both setups is similar, setup 3 has lower
overall computational complexity as shown in Tab. II. Thus,
the performance of a polar code of length N = 4096 can be
approached by four blocks of length N = 1024, saving in
computational complexity. Again, the effect of the auxiliary
polar codes on the BER is illustrated in Fig. 9 by the green
(uncoupled, no auxiliary polar codes used) and red curves
(coupled). Similar results and behavior is achieved in [15],
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(a) Iterative decoder of the proposed flexible length code.
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(b) Information flow, simplified (left) and detailed (right).

Figure 6: BP information flow in the decoder of the flexible
length code.
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Figure 7: BER-curves of the different setups (compare to Tab.
I).
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LOCAL-GLOBAL LDPC CODE [2]
Sub-blocked Tanner graph with 3 subblocks of
length 6.
Local check nodes L and joint (global) check
nodes J.

3

matrix H can be represented by a bipartite graph, called a Tanner graph, with nodes partitioned to variable nodes
and check nodes; there exists an edge between check node i and variable node j, if and only if Hij = 1 (this paper
focuses on binary linear codes, but this representation can be generalized). The fraction of variable (resp. check)
nodes in a Tanner graph with degree i is denoted by Λi (resp. Ωi), and the fraction of edges connected to variable
(resp. check) nodes of degree i is denoted by λi (resp. ρi); Λi and Ωi are called node-perspective degree distributions,
and λi and ρi are called edge-perspective degree distributions.

The degree-distribution polynomials associated to a Tanner graph are given by

Λ(x) =
∑

i

Λix
i, λ(x) =

∑

i

λix
i−1, x ∈ [0, 1], (1a)

Ω(x) =
∑

i

Ωix
i, ρ(x) =

∑

i

ρix
i−1, x ∈ [0, 1]. (1b)

The node-perspective and edge-perspective polynomials are related through

Λ(x) =
∫ x

0
λ(t)dt∫

1

0
λ(t)dt

, Ω(x) =
∫ x

0
ρ(t)dt∫

1

0
ρ(t)dt

, x ∈ [0, 1], (1c)

λ(x) = Λ′(x)
Λ′(1) , ρ(x) = Ω′(x)

Ω′(1) , x ∈ [0, 1], (1d)

where the operator ′ stands for the function’s derivative.

B. The Sub-Blocked Tanner Graph

We define an LDPCL code of length N = Mn through a sub-blocked Tanner graph. In this sparse graph, the
variable nodes are divided to M disjoint sets (sub-blocks) of size n each, and the check nodes are divided into two
disjoint sets: local check nodes and joint check nodes. The graph construction is constrained such that each local
check node is connected only to variable nodes that are in the same sub-block of length n; the joint check-node
connections have no constraints. The edges of the graph are partitioned into two sets as well: edges connecting
variable nodes to local check nodes are called local edges, and edges connecting variable nodes to joint check nodes
are called joint edges. Finally, the local (resp. joint) degree of a variable node is the number of local (resp. joint)
edges emanating from it.

Example 1: A sub-blocked Tanner graph with M = 3 sub-blocks – each of length n = 6 – is illustrated in Figure 1.
Local (resp. joint) checks contain an ’L’ (resp. ’J’) label.

L L L L L L L L L

J J J

Fig. 1. Example of a sub-blocked Tanner graph with M = 3 and n = 6. Local (resp. joint) checks contain an ’L’ (resp. ’J’) label.

We denote by ΛL,i the fraction of variable nodes with local degree i, and by ΩL,i the fraction of local check
nodes with degree i. Similarly, λL,i designates the fraction of local edges connected to a variable node with local
degree i, and ρL,i designates the fraction of local edges connected to a local check node of degree i. We call
(ΛL,i,ΩL,i, λL,i, ρL,i) local degree distributions. Note that we do not distinguish between local degree distributions
of different sub-blocks, and we assume that they are the same in all sub-blocks (but the instances drawn from the
distributions are in general different between the sub-blocks). The joint degree distributions (ΛJ,i,ΩJ,i, λJ,i, ρJ,i) are
defined similarly but with an important difference: we allow some variable nodes to have joint degree 0 or 1. Joint
degree 0 increases the rate without compromising decoding performance (as would happen in ordinary LDPC codes
with a single degree distribution). Due to its importance, we will use in the rest of the paper P0 to denote the
coefficient ΛJ,0.

The local and joint degree-distribution polynomials ΛL(·), λL(·),ΩL(·), ρL(·) and ΛJ(·), λJ (·),ΩJ (·), ρJ (·) are
defined similarly to the degree-distribution polynomials for ordinary LDPC codes in (1a)-(1b). Known relations

ENHANCED BP DECODING [3]
Auxiliary code to protect intermediate quality
(semi-polarized) bit-channels.
Enhanced belief-propagation (EBP) decoding on
extended factor graph.

LOCAL-GLOBAL POLAR CODES

Encoder architecture for local-global polar code.

• Systematic auxiliary polar code.

• Split permutation respects inner code as-
signments of Ka1

, Ka2
, ... , KaM

Factor graph for local-global polar decoding.

• Enhanced BP decoding.

• Early stopping rule for coupled codes.

SIMULATION: LOCAL-GLOBAL DECODING WITH 2,4 INNER CODES

• Reff = 0.5.
• Inner codes Cj , j = 1, 2

– Code Cj message size:
Mj = Kaj +Kbj = 32 + 480 = 512

– Code Cj unfrozen frame size:
Kj = Mj + Paj = 512 + 32 = 544

– Code Cj total frame size:
Nj = Kj + Fj = 544 + 480 = 1024

• Systematic auxiliary code C0

– Code C0 rate:
R0 = Ka/(Ka + F0) = 64/128 = 0.5

• Reff = 0.5.
• Inner codes Cj , j = 1, 2, 3, 4

– Code Cj message size:
Mj = Kaj +Kbj = 64 + 448 = 512

– Code Cj unfrozen frame size:
Kj = Mj + Paj = 512 + 64 = 576

– Code Cj total frame size:
Nj = Kj + Fj = 576 + 448 = 1024

• Systematic auxiliary code C0

– Code C0 rate:
R0 = Ka/(Ka + F0) = 256/512 = 0.5


