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I. MOTIVATION AND INTRODUCTION

State-of-the-art DNN models are rapidly growing in size and
complexity to tackle more advanced intelligent computations,
posing challenges to power- and resource-limited mobile
systems-on-chip (SoCs) on which the models are stored and
executed. In the NLP domain, for example, after the proposal of
the transformer architecture [1], [2], the BERT [3], and GPT [4]
model families have been making continuous breakthroughs
in GLUE [5] and SQuAD [6] benchmarks with exploding
model sizes. The BERTlarge model has 340 million parameters
[3], leading to a memory footprint of 1.12GB using single-
precision data representation format. Such enormous memory
requirements prevent the direct deployment of these models
directly onto mobile SoCs.

Efforts such as the ALBERT model [7], have been made
to minimize the model size while keeping inference accuracy.
However, the downside of such models is that they are highly
specialized, losing generalization capabilities, and requiring
considerable training efforts to recover accuracy when changing
inference task. Real-world DNN application scenarios, such
as home-owned healthcare devices and personalized smart
assistants make use of simultaneous multi-task inference (MTI)
to perform complex operations. These combinations of tasks
may include paraphrasing, sentimental analysis, and question-
answering for applications in the NLP domain and image
recognition, action detection, and object tracking in computer
vision. Although existing solutions are effective in alleviating
the latency, energy, and area costs of running single tasks,
achieving real-time MTI requires running computations over
multiple variants of the model parameters, which are tailored
to each of the targeted tasks. This approach leads to either
unrealistic on-chip memory requirements or expensive off-chip
memory access to update the model parameters. Additionally,
the deployment of multiple tailored copies of the model
parameters is not a scalable solution when the number of
targeted tasks increases.

II. METHODOLOGY

We propose a memory-centric hardware/software co-design
optimization to solve these conflicts from multiple directions.
Inspired by the approach used in MEMTI for computer vision
tasks [8], we extend the use of residual adapters [9], [10]
from the ResNet model to the ALBERT model with the

goal of achieving MTI operations with low on-chip memory
requirements and minimal overheads for additional tasks. The
resulting adapter-ALBERT model keeps a copy of the majority
of its layers unchanged from a pre-trained vanilla ALBERT
model as the backbone parameters, while a separate set of
task-specific non-fixed parameters are fine-tuned and stored
for each separate task. This is achieved by fine-tuning a vanilla
ALBERT model on a target task, then invoke adapter modules
and fine-tune non-fixed parameters for new tasks while the
backbone parameters are excluded from back propagation, so
that the backbone parameters are only trained once. While it
is possible to train adapters for new tasks in-flight, this work
assumes backbone and task-specific parameters are pre-trained
offline before deployment.

The block diagram of Figure 1(a) shows the structure of the
adapter-ALBERT model. The green and yellow blocks represent
the non-fixed layers and backbone of the adapter-ALBERT
model respectively. While the model’s embedding layers are
entirely task-agnostic and the classifier layer is entirely task-
specific, the transformer layers are partitioned between fixed
and adapter parameters to accommodate different tasks and
are mapped to a heterogeneous memory architecture (HMA)
obtained by combining CMOS-based SRAM and resistive RAM
(RRAM).

In particular, we take advantage of RRAM’s high storage
density and non-volatility and mask its programming cost and
endurance limitations by storing fixed layers that do not have to
be updated when switching tasks. The task-specific layers are
stored in SRAM and updated during inference over multiple
tasks. This architecture ensures its scalability for increased
number of suitable tasks without influencing backbone model
performance.

We further enhance the storage efficiency with pruning,
quantization, and bit-mask encoding optimizations. The ability
to distribute parameters across different memory technologies
provides the additional benefit of selectively introduce fault
tolerance across the different layers. In order to maximize
storage density while limiting the impact of faults in RRAM
bitcells, we used multi-level cell encoding to store non-zero
values, while bit-mask matrices, which are more susceptible
to faults, are stored using the more robust single-level cell
encoding. Figure 1(b) shows the structure of an accelerator
architecture based on EdgeBERT using our proposed hetero-



Fig. 1. The overview of (a) the adapter-ALBERT model and (b) the HMA. The colors of the adapter-ALBERT model indicate the backbone parts (yellow) and
non-fixed parts (green). The colors of the HMA architecture indicate different roles of components: yellow and green are HMA memory blocks and their colors
match the parts of the adapter-ALBERT model; Red DRAM block is off-chip memory; Orange blocks belong to the compute blocks in the accelerator.

geneous memory. We extended NVMExplorer [11] with an
accelerator performance model to evaluate the design power,
performance, and area of the resulting architecture. We compare
layer-by-layer dataflow execution for both adapter-ALBERT
and vanilla ALBERT, including multiple design choices of
memory array combinations for user-specified optimization
targets provided by NVMExplorer.

III. RESULTS AND POTENTIAL IMPACT

Our proposed memory architecture, inspired by the intro-
duction of adapter modules has the obvious advantage of
reducing data movement costs and maintaining competitive
accuracy while performing multi-task inference on the nine
GLUE datasets. The fixed, task-agnostic layers are stored in
RRAM, offering the opportunity for additional energy savings
by powering off the system when idle: Leveraging non-volatility
we can reduce the cost of switching tasks to that of loading
only the task-specific parameters in SRAM during the power-
up stage. This optimization has a profound impact on the
execution of multi-task NLP inference on edge devices. For a
3-task MTI scenario, using MNLI, MRPC, and QNLI datasets,
our adapter-ALBERT shows clear benefits over the vanilla
ALBERT implementation, in which the entire set of transformer
parameters and classifier have to be replaced to run on different
task. Using 8-bit quantization, adapter-ALBERT requires a
memory footprint of 4.5MB (RRAM) and 0.125MB (SRAM),
while vanilla ALBERT requires 1.5MB (RRAM) and 2.5MB
(SRAM). While the overall on-chip capacity is larger for
adapter-ALBERT, we can take advantage of the increased
RRAM density compared to SRAM for a net gain of 1.7×,
32×, and 9× in area, energy, and latency respectively.

Looking beyond this specific implementation tailored around
the adapter-ALBERT model, our co-design approach can further
provide a unified and efficient memory storage to reduce
the memory footprint for data-intensive learning algorithms

where several DNN models collaborate across modalities and
application domains. The key advantage offered by our solution
is to provide a more scalable and flexible memory architecture
that, by virtue of combining different memory technologies, can
hide the limitations of emerging non-volatile memories such
as limited endurance, reliability, and write performance. These
improvements are supported by carefully selected algorithmic
optimizations, which highlights the importance of adopting
cross-stack design space exploration in the design of future
memory systems, especially when targeting resource-constraint
edge devices.
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