
Capri: Compiler and Architecture Support for
Whole-System Persistence

Jungi Jeong§, Jianping Zeng and Changhee Jung
Purdue University

I. INTRODUCTION

Advanced non-volatile memory (NVM) technologies, such
as Intel’s Optane PMem, provide both high-density and in-
memory persistence, realizing the full potential to unify the
main memory and storage devices. This leads to the advent of
persistent memory programming for so-called partial-system
persistence (PSP), e.g., Optane’s app-direct mode, where
DRAM is used as the main memory while NVM serves as a
persistent heap. In PSP, programmers must delineate a piece of
code which requires crash consistency and explicitly manage
both volatile and non-volatile data (objects) using dedicated
interfaces such as pmalloc or persistent transactions [1].
However, the persistent memory programming is difficult and
often necessitates custom data structure design and application-
specific recovery code tailored to particular data structures, thus
being limited to a small set of programs such as in-memory
index structures/databases or key-value stores [2], [3].

II. MOTIVATION

Unfortunately, this limitation hinders most users from
readily taking advantage of both high-density and in-memory
persistence of NVM. With that in mind, as an alternative to the
app-direct mode, Intel proposes a memory mode, where DRAM
is vertically integrated as a cache on top of NVM. In particular,
since NVM here is used as the high-density yet volatile main
memory, it does not provide in-memory persistence at all. This
implies that in the memory mode, users have no choice but
to put up with data loss in case of power failure, unless they
resort to the app-direct mode at the expense of the persistent
memory programming difficulty.

To solve the problems, this paper studies whole-system
persistence (WSP) that simultaneously enables high-density and
in-memory persistence and satisfies the following requirements.
First, WSP must be able to restore the entire system on
failure recovery no matter how deep the volatile cache and
memory hierarchy is as in off-chip DRAM cache as Optane’s
memory mode. Second, failure recovery should be offered to
any programs (instead of being limited to in-memory databases
and key-value stores) in a software-transparent manner, which
is desired as a variety of recent works confirm that persistent
programming is error-prone [4].

A. Limitation of state-of-the-art approaches
The key approach to achieving whole-system persistence is to

flush all data in volatile media (e.g., register files, CPU caches,

§Now at Google.

and DRAM) into non-volatile memory before the impending
power failure. For example, Narayanan et al. proposed to use
residual energy and persist all volatile status when power is
about to be cut off [5]. Similarly, Intel recently announced
extended ADR (eADR) support that includes on-chip caches
in the persistent domain [6]. However, it turns out that eADR
must secure an excessive amount of residual energy to persist
the deep cache hierarchy of HPC manycore processors, which
gets worse for the off-chip DRAM cache as in the memory
mode of Intel Optane. Apart from that, eADR does not protect
other volatile states such as register files and internal buffers
in the processor pipeline. This limitation makes it practically
impossible to realize whole-system persistence at low cost.

B. Overall Design

To this end, this paper proposes Capri, a compiler and
architecture co-design scheme that achieves region-level whole-
system persistence. Capri partitions programs into a series of
regions, where each region boundary serves as a recovery point.
For this purpose, the Capri compiler inserts region boundary
instructions to delineate the region formation. Furthermore,
it instruments register-checkpointing instructions required for
resuming the power-interrupted programs from the last commit-
ted and persisted region boundaries after failure recovery. Then,
all store instructions within a region are carefully handled by
hardware, which leverages the hardware non-volatile proxy
buffer as the safety net to prevent partial updates. The proxy
buffer guarantees that modified data in a region are not released
to the non-volatile main memory before the region is completed.

Capri’s region formation and proxy buffer showcase a novel
interplay between compiler and architecture, enabling whole-
system persistence without program changes while simulta-
neously leveraging high-density and in-memory persistence.
That is, the Capri compiler uses the number of stores as a
region criterion, i.e., the resulting regions contain no more
than the threshold number of stores therein (e.g., 256 by
default, including both regular and checkpointing stores). This
threshold determines the hardware proxy buffer size and
prevents overflow, rendering hardware design simpler.

Challenge #1: Stale Read Prevention. Previous studies with
two data paths to NVM (e.g., the regular data path through
caches and the new persist path from proxy buffers) have
decided to drop dirty cache blocks on their last-level cache
eviction (from the regular path) to simplify the sequential persist
order [7]–[10]. However, such a design decision complicates
the NVM read operations—whenever searching data in NVM,



it must look up the proxy buffer simultaneously, increasing
both read latency and energy consumption. Such indirect read
has been mitigated in various ways, e.g., HW bloom filter [7],
[8], cache coherence [10], or speculation [9], but they all come
at the cost of significant hardware and software complexity.

Solution #1: Undo+Redo Logging. Capri eliminates the
indirect read problem by allowing NVM updates from the
both dirty cache writeback and the proxy buffer. Therefore,
memory loads and stores happen in the same way as the
commodity architecture. However, dirty cache writeback may
break correctness by persisting regions out of order. To preserve
crash consistency with this distinctive architecture, Capri uses
undo+redo logging that keeps data of both before and after
the update. Thus, even if the dirty cache writeback persists
regions out of order, the undo value (e.g., before the update)
can safely restore the previous state across a power failure.

Challenge #2: Checkpoint Overheads. By its nature,
whole-system persistence (in line with persistent memory
programs [7], [9]–[11]) should come with performance
overheads—compared to volatile execution—and complex
hardware changes to control the persist order. For example, with
WSP, all store instructions in a region must be reflected inside
the non-volatile main memory before proceeding to the next
region. Furthermore, register-checkpointing stores incur non-
negligible pressure to NVM, leading to a substantial slowdown.
Therefore, the primary design goal of Capri is to lengthen
the region size as much as possible to lessen checkpointing
stores. The longer regions are desirable since they reduce the
number of checkpointing stores and unburden the pipeline by
less dynamic instruction counts.

Solution #2: Compiler Optimizations. Capri reduces
checkpoint overheads via 1) region size extension and 2)
unnecessary checkpoints removal. First, we found that although
a large number (e.g., 1k stores) is given as a threshold,
many of the resulting regions contain fewer stores due to
short loops in programs. In light of this, Capri presents
speculative loop unrolling that unrolls the loop even if iteration
counts are unavailable at compile time. In this way, the Capri
compiler significantly extends the region sizes for short loops in
programs. Second, Capri leverages existing compiler analysis
to reduce checkpoint overheads further [12], i.e., it removes
register-checkpointing stores if their register values can be
reconstructed by other register values at recovery time. Finally,
Capri rearranges checkpointing stores to prevent repeated
checkpoints of the same register inside the loop body.

III. EXPERIMENTAL METHODOLOGY AND EVALUATION
RESULTS

For evaluation, we used the full-system simulation mode of
a cycle-accurate architecture simulator (gem5). Notably, we
re-compiled the entire Linux Kernel with our Capri compiler
to include the OS in the whole-system persistence domain. Our
experiments demonstrate that Capri accomplishes lightweight

whole-system persistence only causing 0%, 12.4%, and 9.1%
performance overheads in a geometric mean for SPEC2017,
STAMP, and Splash3 benchmarks, respectively. Although a
naive approach may slow down the benchmark up to 2X, our
novel architecture and compiler interaction achieves very low
performance overheads. Consequently, Capri makes it possible
to accommodate all programs as first-class citizen in the world
of persistence.

IV. CONCLUSION

To leverage both high-density and in-memory persistence
benefits of NVM, the users of Intel Optane are forced to select
the app-direct mode over the memory mode. As a result, only
a handful of applications can resort to the both benefits at the
expense of persistent programming difficulty. To address the
limitation, this paper introduced Capri, a compiler/architecture
co-design scheme for region-level whole-system persistence.
Unlike partial-system persistence, Capri makes any programs
failure-atomic without source code change while letting them
enjoy both high-density and in-memory persistence simultane-
ously. This guarantee is particularly promising for the Optane
users since Capri can free them from all the headaches of
persistent programming including notorious crash consistency
bugs. To achieve this, the Capri compiler generates recoverable
regions while Capri architecture guarantees their execution
to be crash-consistent. Furthermore, Capri’s compiler and
architecture optimizations enable lightweight whole-system
persistence (5.1% average slowdown), thereby offering all
programs high-performance persistence with increased memory
space.

REFERENCES

[1] H. Volos, A. J. Tack, and M. M. Swift, “Mnemosyne: Lightweight
persistent memory,” in ASPLOS, 2011.

[2] “Pmem redis.” https://github.com/pmem/redis/tree/3.2-nvml.
[3] V. J. Marathe, M. Seltzer, S. Byan, and T. Harris, “Persistent mem-

cached: Bringing legacy code to byte-addressable persistent memory,” in
HotStorage, 2017.

[4] S. Liu, Y. Wei, J. Zhao, A. Kolli, and S. Khan, “Pmtest: A fast and
flexible testing framework for persistent memory programs,” in ASPLOS,
2019.

[5] D. Narayanan and O. Hodson, “Whole-system persistence with non-
volatile memories,” in ASPLOS, 2012.

[6] “eadr: New opportunities for persistent memory applications.”
https://software.intel.com/content/www/us/en/develop/articles/eadr-new-
opportunities-for-persistent-memory-applications.html.

[7] S. Nalli, S. Haria, M. D. Hill, M. M. Swift, H. Volos, and K. Keeton,
“An analysis of persistent memory use with whisper,” in ASPLOS, 2017.

[8] J. Jeong, C. H. Park, J. Huh, and S. Maeng, “Efficient hardware-assisted
logging with asynchronous and direct-update for persistent memory,” in
MICRO, 2018.

[9] J. Jeong and C. Jung, “Pmem-spec: Persistent memory speculation (strict
persistency can trump relaxed persistency),” in ASPLOS, 2021.

[10] A. Kolli, J. Rosen, S. Diestelhorst, A. Saidi, S. Pelley, S. Liu, P. M.
Chen, and T. F. Wenisch, “Delegated persist ordering,” in MICRO, 2016.

[11] V. Gogte, W. Wang, S. Diestelhorst, P. M. Chen, S. Narayanasamy, and
T. F. Wenisch, “Relaxed persist ordering using strand persistency,” in
ISCA, 2020.

[12] H. Kim, J. Zeng, Q. Liu, M. Abdel-Majeed, J. Lee, and C. Jung,
“Compiler-directed soft error resilience for lightweight gpu register file
protection,” in PLDI, 2020.

https://github.com/pmem/redis/tree/3.2-nvml
https://software.intel.com/content/www/us/en/develop/articles/eadr-new-opportunities-for-persistent-memory-applications.html
https://software.intel.com/content/www/us/en/develop/articles/eadr-new-opportunities-for-persistent-memory-applications.html

	Introduction
	Motivation
	Limitation of state-of-the-art approaches
	Overall Design

	Experimental methodology and evaluation results
	Conclusion
	References

