Merchandiser: Data Placement on Heterogeneous Memory for Task-Parallel HPC Applications with Load-Balance Awareness

Dong Li

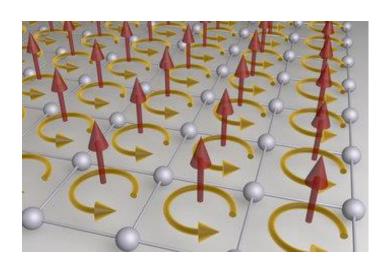
MARCH 13-14, 2023

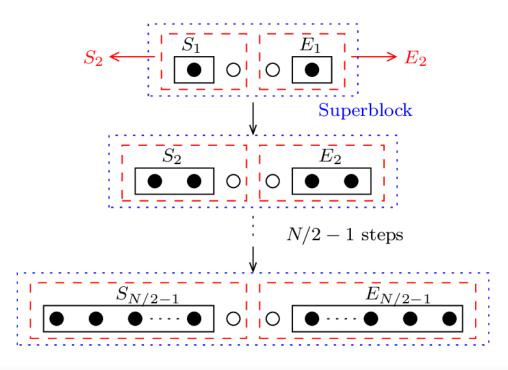
Electrical Engineering and Computer Science University of California, Merced

Some HPC applications need large memory capacity

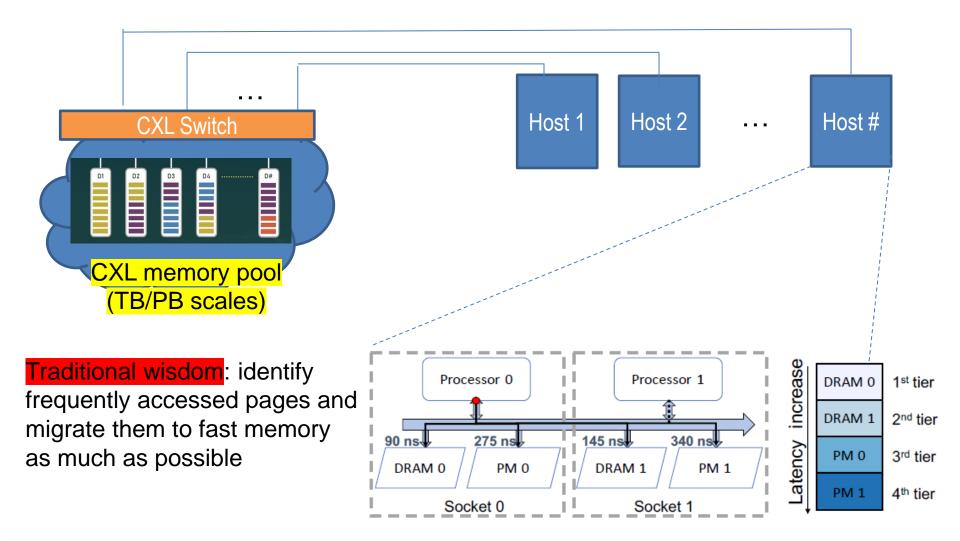
Example:

Density matrix renormalization group (DMRG), a numerical algorithm in quantum many-body systems, can consume 1.271 TB memory in a single machine

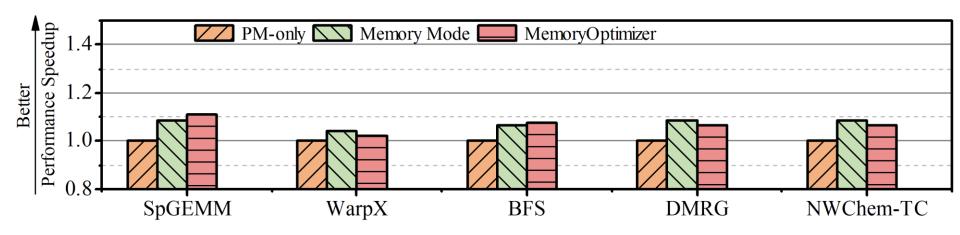




Big memory systems tend to be heterogeneous



Traditional wisdom does not effectively guide page migration



Performance of Memory Mode, Memory Optimizer, and PM-only, normalized to the performance of PM-only execution

- 192 GB DRAM as fast memory and 1.5 TB Intel Optane Persistent Memory as slow memory
- Memory mode (a hardware-based solution) and MemoryOptimizer (a software solution from Intel) improves performance by less than 10%

What's going on?

Let's look at these applications

```
(a) MPI-based App. (DMRG)

Partition Hamiltonian into blocks
Each MPI rank get a block
Block has its input data (H, PSI)
for sweep in sweeps: Task Entry Point
S1: Construct problem Task Execution
S2: Solve Davidson function
S3: Apply SVD to update (H, PSI)
Exchange boundary and svnc.

Synchronization
```

- An iteration of the loop is regarded as a task instance
- The task is repeatedly executed
- Different task instances use different inputs (i.e., PSI)
- There is a global sync among MPI processes

What's going on?

Let's look at these applications

```
(b) OpenMP-based App. (SpGEMM)

for (A*B) in an application:
Partition A into bins by rows
Each bin has its size and NNZ

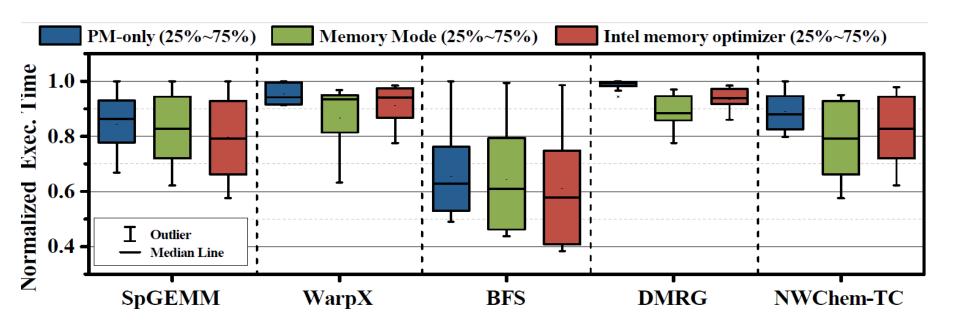
#pragma omp parallel
Task Entry Point

{T1: Compute NNZ of C Task Execution
Sync point 1 Synchronization
T2: Compute values of C Task Execution
Sync point 2}

Synchronization
```

- A thread works on a task instance
- The task is repeatedly executed
- Different task instances use different inputs (i.e., A and B)
- There is an implicit synchronization among threads

Traditional wisdom does not effectively guide page migration

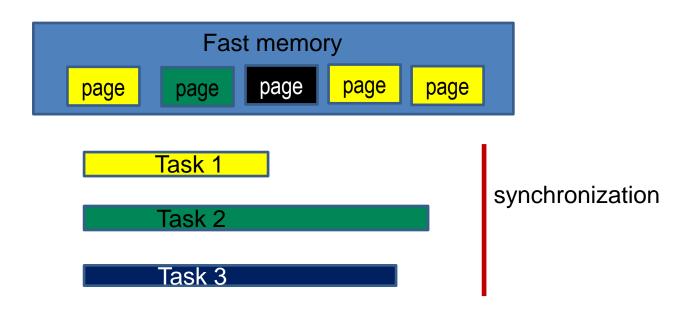


Task execution time and their variance. In the figure, wider box and longer whiskers indicate larger performance variance and worse load balance among tasks. Performance is normalized by the performance of PM-only

- Performance variance across tasks becomes much larger
 - Compared with PM-only, the memory mode and MemoryOptimizer increase the average coefficient of variation by 57.2% and 55.4%

Reasons why traditional wisdom cannot work

 Profiling-guided optimization (PGO) approaches periodically sample memory pages and track memory accesses to them



Lack a view of "finishing all tasks fast" for high performance

Merchandiser: a load balance-aware data placement system for HM

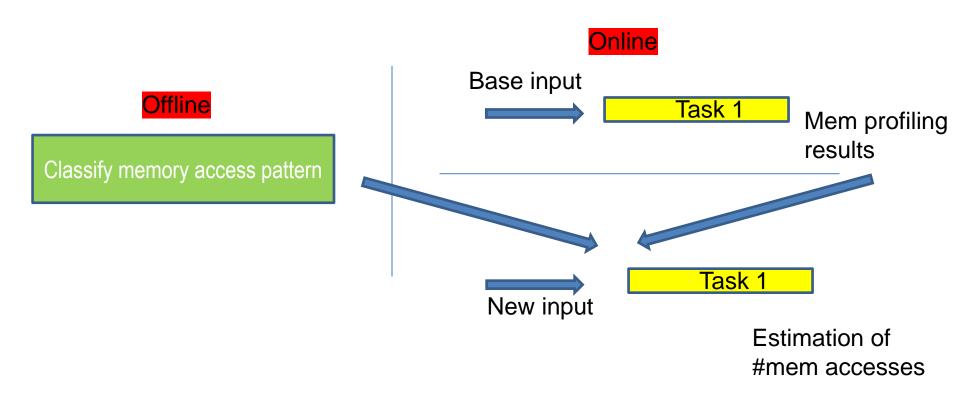
- Input-aware memory access quantification
 - Estimating memory accesses to data objects for an input problem

- Performance modeling
 - Modeling application performance under various data placement on HM

Load balance-aware runtime system

Input-aware memory access quantification

Basic idea



Input-aware memory access quantification

Classification of memory access patterns

Specify data objects for management

```
void *LB_HM_config(void* objects, int* sizes)
```

- Object-level memory access pattern analysis
 - Stream: A[i] = B[i] + C[i]
 - **Strided**: A[i*stride] = B[i*stride]
 - **Stencil**: A[i] = A[i-1] + A[i+1]
 - **Random**: A[i] = B[C[i]]

Input-aware memory access quantification

Estimation of memory access count

$$esti_mem_acc = \frac{S_{new}}{S_{base} \times \alpha} \times prof_mem_acc$$

- Measure at the data object level during the first execution of the task (using the base input)
- α (a parameter) models the caching effects
 - α depends on memory access patterns
 - α is measured offline using microbenchmarks or analytical modeling
- For random access pattern and input-dependent stencil, refine α at runtime

Goal: Modeling application performance under various data placement on HM

Basic idea

 Bound the performance prediction by the best (DRAM only) and the worst (PM only)

 Build upon esti_mem_acc to scale the two performance bounds based on workload characterization

Simplifies our efforts to model memory access patterns but significantly improves usability

$$\begin{split} T_{new_hybrid} = \\ T_{new_pm_only} \times & (1 - (r_{dram_{acc}})) \times f(PMCs, r_{dram_{acc}}) \\ & + T_{new_dram_only} \times r_{dram_{acc}} \end{split}$$

$$r_{dram_{acc}} = \frac{dram_acc}{esti_mem_acc}$$

$$T_{new_hybrid} = \\ T_{new_pm_only} \times (1 - r_{dram_{acc}}) \times f(PMCs, r_{dram_{acc}}) \\ + T_{new_dram_only} \times r_{dram_{acc}}$$
 Correlation function

- f(.) captures workload characterization
- PMCs: performance monitor counters

Construction of the correlation function

$$f(PMCs, r_{dram_{acc}})$$

- Input
 - Some performance events measured using the base input
 - Performance events are selected based on their importance to performance prediction
 - LLC_MPKI, IPC, PRF_Miss, MEM_WCY, L2_LD_Miss, BR_MSP, VEC_INS, and L3_LD_Miss

- A statistical model
 - Gradient boosted regressor (GBR)

Load balance-aware runtime system

Runtime system

Extend the existing page migration mechanism

Check the DRAM page constraint for each task before page migration

Merchandiser

Offline

- Construction of f(.)
 - Happens only once
- Identify input-independent basic blocks
 - Happens only once per application
- Get memory access patterns
 - Happens only once per application

Online

- Collection of task information using the base input
- Online performance prediction with a new input

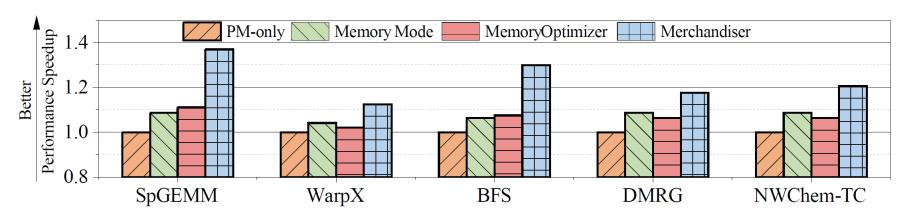
Performance evaluation

- Hardware
 - Dual-socket Intel Xeon Gold 6252N 24-core processors running Linux 5.17.0
 - 192 GB DRAM for fast memory in HM
 - 1.5 TB Intel Optane Persistent Memory for slow memory in HM
 - Single rank per node + OpenMP thread pinning

Applications

Application	LOC	Problem and Input Size	Memory
			Consumption
SpGEMM (General		$A * A^T$ using matrix	
Sparse Matrix-Matrix	$2.21e^{3}$	GAP-kron with 4.22E+9	429.3 GB
Multiplication)		nonzero elements	
WarpX (ECP-WarpX)	$6.78e^4$	Beam-plasma simulation	
		with the scale of	1.056 TB
		1024*1024*2048	
BFS (Breadth-first search)	$1.95e^{3}$	com-Orkut with	
		3.07E+6 vertices	731.9 GB
		and 1.17E+8 edges	
DMRG (density-matrix	8.79e ⁴	Hubbard 2D model with	1.271 TB
renormalization group)		Nx = 320 and Ny = 320	
NWChem-TC	$7.36e^{5}$	Cytosine tensor with	308.1 GB
(Tensor Contraction)		dims of 400*400*58*58	

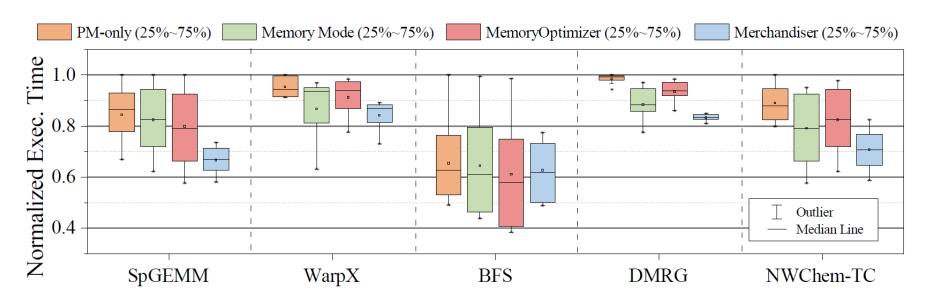
Performance evaluation – overall performance



Performance of Memory Mode, MemoryOptimizer, and Merchandiser, normalized to the performance of PM-only execution

 Merchandiser introduces 23.6%, 17.1%, and 15.4% performance improvement over PM-only, Memory Mode, and MemoryOptimizer respectively

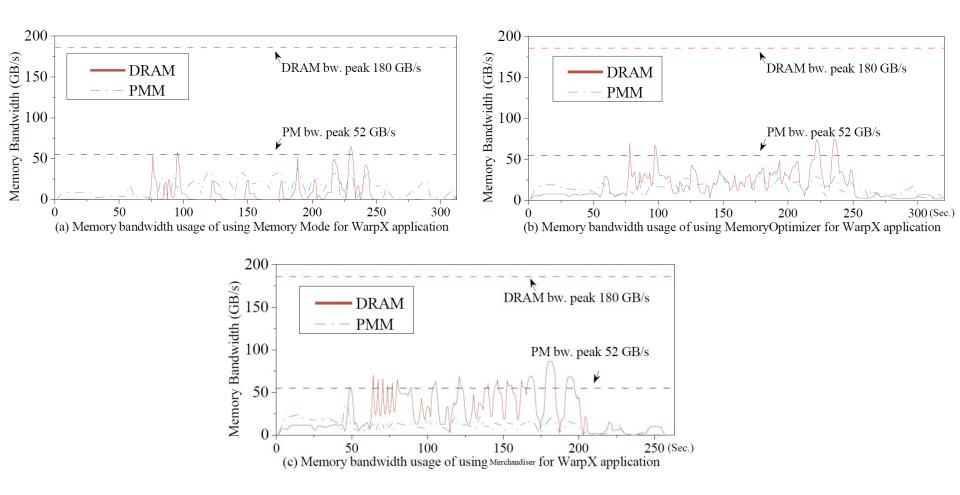
Performance evaluation – load balance



Task execution time and their variance

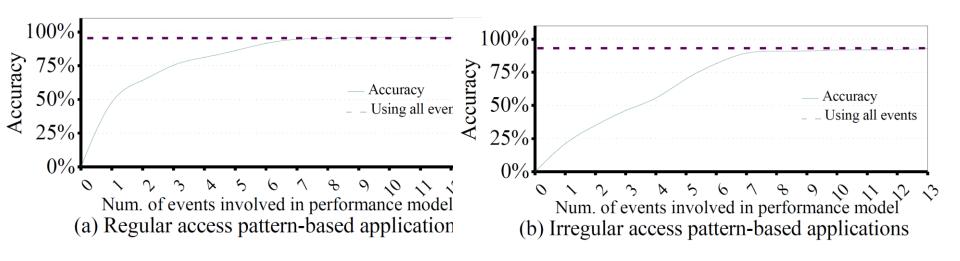
 Compared with Memory Mode and MemoryOptimizer, Merchandiser reduces the average coefficient of variation by 51.6% and 42.7% on average, respectively.

Performance evaluation - DRAM utilization



- Compared with Memory Mode, Merchandiser increases average DRAM bandwidth usage from 5.98 GB/s to 24.31 GB/s, indicating the usage of fast memory is improved;
- Meanwhile, the average PM bandwidth usage is reduced from 13.74 GB/s to 9.97 GB/s, indicating the effectiveness of page migration in Merchandiser

Performance evaluation – event selection and modeling accuracy



Accuracy of the scaling function using different amounts of performance events as input

• Using the top 8 events, the model accuracy is 93.7% and 93.2% for regular- (i.e., WarpX and DMRG) and irregular- applications (i.e., SpGEMM, BFS, and NWChem-TC) respectively, which is close to the accuracy of using all events (94.8% and 94.1%).

Conclusions

 The traditional wisdom "migrating frequently accessed pages to fast memory leads to better performance" is not necessarily correct

 We introducing task semantics during memory profiling and migration to address the limitation of traditional wisdom

- We introduce a load balance-aware data placement system for HM
 - Performance modeling and runtime system