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Some HPC applications need
large memory capacity

» Example:

— Density matrix renormalization group (OMRG), a numerical
algorithm in quantum many-body systems, can consume 1.271 TB
memory in a single machine
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Big memory systems tend to be
heterogeneous
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Traditional wisdom does not
effectively guide page migration
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Performance of Memory Mode, MemoryOptimizer, and PM-only, normalized to
the performance of PM-only execution

+ 192 GB DRAM as fast memory and 1.5 TB Intel Optane Persistent Memory as slow
memory

» Memory mode (a hardware-based solution) and MemoryOptimizer (a software solution
from Intel) improves performance by less than 10%
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What’s going on?

Let’s look at these applications

(a) MPI-based App. (DMRG)

Partition Hamiltonian into blocks

Each MPI rank get a block

Block has its input data (H, PSI)

for sweep in sweeps:  rask Eatry Poiar
S1: Construct problem Task Executica

52: Solve Davidson function
Task
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S3: Apply SVD to update (H, PSI)

Exchange boundary and svnc.
Synchronization

An iteration of the loop is regarded as a task instance
The task is repeatedly executed

Different task instances use different inputs (i.e., PSI)
There is a global sync among MPI processes



What’s going on?
Let’s look at these applications

(b) OpenMP-based ﬁpp (SpGEMM]

for (A*B) in an applic n:
Partition A into bins by rows
Each bin has its size and NNZ

o ragma omp para Llel Task Entry Foint
{T1: Cﬂmpute NNZ of C Task Exacution
Sync point 1 Syachronization
Tasks yRe b —
: Compute values of C  zask Execurion
SFH': p-l:iint ':::.'} Eynchesnd zatian

« Athread works on a task instance

* The task is repeatedly executed

« Different task instances use different inputs (i.e., A and B)
« There is an implicit synchronization among threads
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Traditional wisdom does not
effectively guide page migration

- PM-only (25%~75%) - Memory Mode (25%~75%) - Intel memory optimizer (25%~75%)
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Task execution time and their variance. In the figure, wider box and longer whiskers indicate larger
performance variance and worse load balance among tasks. Performance is normalized by the
performance of PM-only

« Performance variance across tasks becomes much larger

— Compared with PM-only, the memory mode and MemoryOptimizer increase the average
coefficient of variation by 57.2% and 55.4%
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Reasons why traditional wisdom
cannot work

* Profiling-guided optimization (PGO) approaches periodically
sample memory pages and track memory accesses to them

Task 1

synchronization

- Task2z

 Lack a view of “finishing all tasks fast” for high performance

——UNIVERSITY OF CALIFORNIA——
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Merchandiser: a load balance-aware
data placement system for HM

* Input-aware memory access quantification
— Estimating memory accesses to data objects for an input problem

|

* Performance modeling
— Modeling application performance under various data placement on HM

|

» Load balance-aware runtime system
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Input-aware memory access
quantification

Basic idea
Online
Base input
Offline ) Task 1 Mem profiling
results
) Task 1
New input

Estimation of
#mem accesses
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Input-aware memory access
quantification

Classification of memory access patterns

» Specify data objects for management

void *LB_HM_config(void* objects, int* sizes)

* Object-level memory access pattern analysis

e Stream: A[i] = B[i] + C[i]
e Strided: A[i*stride] = B[i*stride]
e Stencil: A[i] = A[i-1] + A[i+1]

e Random: A[i] = B[C[i]]
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Input-aware memory access
quantification

Estimation of memory access count

. Snew
esti_mem_acc = X prof _mem_acc

Shase X & /

» Measure at the data objegt level during the first execution of the task
(using the base input)

* 0 (a parameter) models the caching effects
— a depends on memory access patterns
— ais measured offline using microbenchmarks or analytical modeling

* For random access pattern and input-dependent stencil, refine a at
runtime
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Performance modeling

Goal: Modeling application performance under various data
placement on HM

Basic idea

 Bound the performance prediction by the best (DRAM only) and the
worst (PM only)

* Build upon esti_mem_acc to scale the two performance bounds
based on workload characterization

Simplifies our efforts to model memory access

patterns but significantly improves usability
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Performance modeling

Tnew_hybrid —

e /=

P ~
Tnew_pm_only X (1 _(tdramaw)’x f (P M CS: rdramacc)

-_— gy =

+ Tnew_dram_only X rdramacc

dram_acc

Ta = -
TaMacc  osti mem_acc

UNIVERSIT LIFORNIA-
5 :I I: 1 | School of Engineering



Performance modeling

Tnew_hybrid —

—
—_y
~

-~
Tnew_pm_only X (1 _ rdramacc) X(]:(PMCS’ rdramacc)
-~ - -

_ e am mm =

+ Tnew_dram_only X Tdramgcc Correlation function

 f(.) captures workload characterization
 PMCs: performance monitor counters

UNIVERSITY OF CALIFORN]
I ‘ ‘s ‘ ‘ L :I I: 1 5 School of Engineering



Performance modeling

Construction of the correlation function

f (PM Cs, rd?‘amacc)

* Input
— Some performance events measured using the base input

* Performance events are selected based on their importance to performance
prediction

 LLC_MPKI, IPC, PRF_Miss, MEM_WCY, L2 LD Miss, BR_MSP, VEC _INS,
and L3 LD Miss

» A statistical model
— Gradient boosted regressor (GBR)
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Load balance-aware runtime
system

Runtime system

» Extend the existing page migration mechanism

» Check the DRAM page constraint for each task before page
migration
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Merchandiser

Offline Online
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Performance evaluation

* Hardware

— Dual-socket Intel Xeon Gold 6252N 24-core processors

running Linux 5.17.0
—192 GB DRAM for fast memory in HM
—1.5 TB Intel Optane Persistent Memory for slow memory

In HM

— Single rank per node + OpenMP thread pinning

* Applications

PASA Lab

. . . Memory
Application LOC | Problem and Input Size Consumption
SpGEMM (General A = AT using matrix
Sparse Matrix-Matrix | 2.21e° GAP-kron with 4.22E+9 429.3 GB
Multiplication) nonzero elements
Beam—plasma simulation
{Ecgﬁi{,};}; X) 6.78e* with the scale of 1.056 TB
P 1024*1024*2048
BES com-Orkut with
(Breadth-first search) 1.95¢” 3.07E+6 vertices 731.9 GB
and 1.17E+8 edges
DMRG (density-matrix 4+ | Hubbard 2D model with
renormalization group) 8.79% Nx = 320 and Ny = 320 1.271 1B
NWChem-TC 7 3665 Cytosine tensor with 308.1 GB
(Tensor Contraction) =o€ dims of 400"400*58%58 )
19



Performance evaluation - overall
performance
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Performance of Memory Mode, MemoryOptimizer, and Merchandiser,
normalized to the performance of PM-only execution

* Merchandiser introduces 23.6%, 17.1%, and 15.4%
performance improvement over PM-only, Memory Mode, and
MemoryOptimizer respectively
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Performance evaluation - load
balance
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Task execution time and their variance

» Compared with Memory Mode and MemoryOptimizer,
Merchandiser reduces the average coefficient of variation by
51.6% and 42.7% on average, respectively.
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Performance evaluation - DRAM utilization
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(¢) Memory bandwidth usage of using Merchandiser for WarpX application

» Compared with Memory Mode, Merchandiser increases average DRAM bandwidth usage from 5.98 GB/s to 24.31 GB/s,
indicating the usage of fast memory is improved;

* Meanwhile, the average PM bandwidth usage is reduced from 13.74 GB/s to 9.97 GB/s, indicating the effectiveness of
page migration in Merchandiser
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Performance evaluation - event
selection and modeling accuracy

100%;
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(a) Regular access pattern-based application

Accuracy

Accuracy
~ _ Using all events
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(b) Irregular access pattern-based applications

Accuracy of the scaling function using different amounts of performance events
as input

« Using the top 8 events, the model accuracy is 93.7% and 93.2% for
regular- (i.e., WarpX and DMRG) and irregular- applications (i.e.,
SpGEMM, BFS, and NWChem-TC) respectively, which is close to the

accuracy of using all events (94.8% and 94.1%).
PASA Lab
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Conclusions

 The traditional wisdom “migrating frequently accessed
pages to fast memory leads to better performance” is
not necessarily correct

* We introducing task semantics during memory profiling
and migration to address the limitation of traditional
wisdom

* We introduce a load balance-aware data placement system for
HM

» Performance modeling and runtime system

UNIVERSITY OF CALIFORNIA-
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