
Merchandiser: Data Placement on Heterogeneous Memory for

Task-Parallel HPC Applications with Load-Balance Awareness
𝐙𝐡𝐞𝐧 𝐗𝐢𝐞𝟏,𝟐,𝐃𝐨𝐧𝐠 𝐋𝐢𝟏

University of California, Merced1

Argonne National Laboratory2

Conclusion

Evaluation ResultsMotivation and Introduction
➢ HM raises a data placement problem
➢ Because of small capacity of fast memory and relatively worse

performance of slow memory.
➢ Memory pages must be allocated and migrated between fast and

slow memories.
➢ To make sure that most of memory accesses can happen in fast

memory for high performance

➢ Many solutions to address the data placement problem on
HM uses a profiling-guided optimization (PGO) approach
➢ These solutions identify frequently accessed memory pages (``hot

pages'') by periodically sampling memory pages and tracking
memory accesses to them

➢ Hot pages are then migrated to fast memory for better
performance.

Research questions:

➢ The PGO on HM cannot work well for task-parallel applications
➢ Because they lack a view of ``finishing all tasks fast'' for high

performance.
➢ They migrate and place hot pages into fast memory, but do not

consider which task accesses those memory pages.

Methodology

➢ Introduce a load balance-aware data placement

system for HM, named Merchandiser, to address

the problem

➢Merchandiser introduces task semantics during memory
profiling. This means Merchandiser associates memory
accesses with tasks during profiling, instead of being
application-agnostic.

➢ Using limited task semantics, Merchandiser effectively sets
up coordination among tasks on the usage of HM.

➢Merchandiser uses historical, fine-grained profiling results
of the task to guide data placement for the subsequent
executions of the same task with new inputs.

➢Performance modeling to predict execution time of
the task:
➢ The novelty of our performance modeling lies in the

modeling of performance correlation between different
data placements of the task.

➢ Performance modeling takes the performance of a data
placement as input, and then predicts the performance of
another data placement.

➢Greedy heuristic algorithm:
➢ Decide how to allocate the fast memory space among tasks

to maximize performance benefit of all tasks

[1] Zhen Xie, Jie Liu, Jiajia Li, and Dong Li. 2023.
Merchandiser: Data Placement on Heterogeneous
Memory for Task-Parallel HPC Applications with
Load-Balance Awareness. In Proceedings of the
28th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming.

Observation 1:
Figure1 shows overall performance
normalized to PM-only (Optane-only).
Merchandiser introduces 23.6%, 17.1%,
and 15.4% performance improvement
on average (up to 37.8%, 26.0%, and
23.2%) over PM-only, Memory Mode,
and MemoryOptimizer respectively.

For applications with large load
imbalance, such as BFS and NWChem-
TC, the number of pages being migrated
among tasks can vary by up to 21.4
times.

➢ The traditional wisdom “migrating frequently accessed pages to fast
memory leads to better performance” is not necessarily correct.

➢We introducing task semantics during memory profiling and migration to
address the limitation of traditional wisdom.

➢We introduce a load balance-aware data placement system for HM.

References

Figure 2: Task execution time and their variance

Observation 2:
Compared with Memory Mode and
MemoryOptimizer, Merchandiser
reduces A.C.V (average coefficient of
variation of execution time across
threads/processes) by 51.6% and 42.7%
on average respectively.

Figure 3: Memory bandwidth usage

Observation 3:
Compared with Memory Mode,
Merchandiser increases average DRAM
bandwidth usage from 5.98 GB/s to
24.31 GB/s, indicating the usage of fast
memory is improved;

Meanwhile, the average PM bandwidth
usage is reduced from 13.74 GB/s to
9.97 GB/s, indicating the effectiveness
of page migration in Merchandiser

	Slide 1

