
Merchandiser: Data Placement on Persistent Memory-based
Heterogeneous Memory for Task-Parallel HPC Applications with

Load-Balance Awareness
Zhen Xie

zhen.xie@anl.gov
University of California, Merced
Argonne National Laboratory

Dong Li
dli35@ucmerced.edu

University of California, Merced

1 INTRODUCTION
Many high-performance computing (HPC) applications are becom-
ing memory-consuming. For example, the density matrix renor-
malization group (DMRG), a numerical algorithm to obtain the
low-energy physics of quantum many-body systems, can consume
1.271 TB memory in a single machine when solving the Hubbard
2Dmodel at the scale of 320×320. To meet memory requirements of
those applications, the big memory system is emerging. An example
of such a system is the Intel Optane persistent memory module
(PMM)-based machine where there can be up to 12 TB memory in
a single two-socket machine. Another example of such a system is
the Amazon EC2 High Memory Instance built upon eight NUMA
nodes and providing up to 12 TB memory. The big memory system
is often heterogeneous, which means multiple memory components
with different latency and bandwidth form the main memory. In
the example of Intel PMM, DRAM and persistent memory (PM)
form heterogeneous memory (HM). DRAM is faster (in terms of
bandwidth and latency) but costly and smaller, while PM is slower
but cheaper and larger. HM provides a cost-effective solution to
significantly increase memory capacity.

HM raises a data placement problem. Because of small capacity
of fast memory and relatively worse performance of slow memory,
memory pages have to be allocated and migrated between fast and
slow memories, such that most of memory accesses can happen in
fast memory for high performance. It has been shown that some
HPC applications can suffer from up to 5.7× performance loss
(comparedwith using a fast memory-only solution) with suboptimal
data placement on HM.

Many solutions to address the data placement problem on HM
uses a profiling-guided optimization (PGO) approach. These solu-
tions identify frequently accessed memory pages (“hot pages”) by
periodically samplingmemory pages and trackingmemory accesses
to them. Hot pages are then migrated to fast memory for better
performance. These solutions are application-agnostic, meaning
that they do not need application knowledge or change applications.
Success of these solutions is based on an implicit assumption that
placing hot pages in fast memory always leads to better perfor-
mance. However, we find that it is not true for many task-parallel
HPC applications.

Task-parallel programs are common in HPC. A task-parallel pro-
gram can be MPI-based, and each MPI process performs a task.
It can be OpenMP-based, and each OpenMP thread performs a
task. There is synchronization among tasks where tasks must reach

★The original version [1] of this paper was accepted in the 28th ACM SIGPLANAnnual
Symposium on Principles and Practice of Parallel Programming (PPoPP ’23).

the synchronization point before they move on to the rest of com-
putation. Because of synchronization among tasks, finishing all
tasks fast instead of finish individual tasks fast is a key for high
performance.

The PGO on HM cannot work well for task-parallel applications.
They lack a view of “finishing all tasks fast” for high performance.
They migrate and place hot pages into fast memory, but do not
consider which task accesses those memory pages. As a result, the
existing efforts could introduce load imbalance: a task unnecessarily
reaches the synchronization point earlier than the others and waits
for other tasks to finish, becausemany pages of this task are resident
in fast memory, leading to its shorter execution time.

To reveal the load imbalance problem on HM, we study five HPC
applications on an Optane-based HM. This HM consists of 192GB
DRAM and 1.5TB Optane. We study two representative solutions:
an industry-quality, software solution (Intel MemoryOptimizer)
and a hardware solution (Memory Mode of Optane). We have two
observations.

• Compared with running on homogeneous memory, running on
HM increases performance difference among tasks: on average,
the performance difference among tasks is increased by 17%
and 16% (when MemoryOptimizer and Memory Mode are used
respectively), which indicates more load imbalance after using
MemoryOptimizer and Memory Mode on HM.

• Performance improvement is minimal after using MemoryOpti-
mizer and Memory Mode. The performance improvement is only
4.32% and 3.71% respectively (compared with using Optane only),
because the overall performance is hindered by the slowest task.

There are two fundamental reasons accounting for the above
performance problem. First, the PGO solutions (such as Memory-
Optimizer) are not aware of task parallelism. There is a lack of
coordination among tasks to share the limited fast memory space.
That space is allocated to tasks based on opportunistic detection
of hot pages from tasks, not based on performance analysis on
potential performance benefit of using fast memory for tasks. It
may unfairly place too many pages from one task into fast memory,
causing load imbalance. Second, the PGO solutions use random page
sampling-based memory profiling. Random sampling is effective to
avoid large overhead of profiling all memory pages in a big memory
system. However, it may collect many memory accesses from one
task, which leads to too many pages of that task migrating to fast
memory, causing load imbalance.

We introduce a load balance-aware data placement system for
HM, named Merchandiser, to address the problem. Merchandiser
introduces task semantics during memory profiling. This means

1

https://doi.org/10.1145/3572848.3577497

Zhen Xie and Dong Li

Merchandiser associates memory accesses with tasks during pro-
filing, instead of being application-agnostic. Using limited task
semantics, Merchandiser effectively sets up coordination among
tasks on the usage of HM. Furthermore, Merchandiser uses histori-
cal, fine-grained profiling results of the task to guide data placement
for the subsequent executions of the same task with new inputs.

However, to realize Merchandiser we face two challenges. First,
the input problem to a task during program execution can vary,
and the historical profiling results collected from one input cannot
be directly used to predict performance for another input, because
of the difference in the number of memory accesses. Second, how to
partition the fast memory space among tasks is challenging. Unless
all tasks have the same memory access patterns and data object
sizes, evenly sharing fast memory among tasks cannot work. We
must decide for each task with a new input, which objects should
be placed in fast memory without priori knowledge on the number
of memory accesses to the objects. We must also predict execution
time of tasks after migration, such that the effectiveness of load
balance can be quantified and estimated.

To address the first challenge on handling new input problems,
Merchandiser classifies data objects in terms of their memory ac-
cess patterns, based on which Merchandiser analytically derives
the number of main memory accesses for a new input problem. The
memory access patterns are mostly invariant across input problems
for a given task in many HPC applications, providing a reliable in-
dication on the number of memory accesses. We also recognize the
difference in the impacts of memory access patterns, and estimate
the number of memory accesses differently for different patterns.

Based on the estimated memory accesses, Merchandiser intro-
duces performance modeling to predict execution time of the task
when a certain portion of memory accesses happens in fast memory
while the remaining memory accesses happen in slow memory. The
novelty of our performance modeling lies in the modeling of perfor-
mance correlation between different data placements of the task. In
particular, performance modeling takes the performance of a data
placement as input, and then predicts the performance of another
data placement. The performance modeling sets up a correlation
between the above two performances. The task characteristics are
represented and quantified using a few performance events col-
lected from only one execution of a specific data placement.

To address the second challenge on deciding which pages should
be migrated to fast memory for parallel tasks, we introduce a greedy
heuristic algorithm to decide how to allocate the fast memory space
among tasks to maximize performance benefit of all tasks (not an
individual task). The algorithm varies the portion of fast-memory
accesses based on the performance modeling to find a load-balance
solution.

2 OVERVIEW OF MD-HM
Merchandiser uses performance modeling to guide data placement
in HM. The performance modeling uses task information as in-
put, which includes the execution time of basic blocks in the task
program and runtime performance events critical to decide the
performance sensitivity of the task to data placement. The task
information is collected in the first instance of the task using an
input problem and used by the performance modeling to predict

S p G E M M W a r p X B F S D M R G N W C h e m - T C0 . 8
1 . 0
1 . 2
1 . 4

Be
tter

Per
for

ma
nce

 Sp
eed

up P M - o n l y M e m o r y M o d e M e m o r y O p t i m i z e r M e r c h a n d i s e r

Figure 1: Performance of Memory Mode, MemoryOptimizer,
and Merchandiser, compared to the PM-only execution.
the performance of the same task for a new input under various
data placement on HM. The performance modeling is integrated
into a runtime system to decide if data migration can introduce
load imbalance among tasks.

To accurately predict the execution time of a task with a new
input, our performance modeling first estimates the number of
memory accesses to data objects with the new input. Merchandiser
performs analysis on memory access patterns at the data object
level through static analysis; then the estimation is made according
to data object sizes, the number of memory accesses collected from
the base input, and memory access patterns. Merchandiser has a
runtime system using performance modeling to decide if data mi-
gration should happen or not with load-balance awareness. Before
task execution, the runtime first employs a heuristic algorithm to
decide how many fast memory accesses should happen for each
task based on the performance modeling. Then, utilizing memory
profiling mechanisms in existing solutions, Merchandiser deter-
mines if the pages corresponding to each task should be migrated
from slow memory (Optane) to fast memory (DRAM).

3 EVALUATION
Platform. We evaluate Merchandiser on a two-socket server with
two Intel Xeon Gold 6252N 24-core processors running Linux 5.17.0.
Each socket has 12 DIMM slots: six for 16-GB DDR4 DRAM mod-
ules, and six for 128-GB Optane PMM. In total, the system has 192
GB DRAM and 1.5 TB PM. We use Memkind to manage the page
placement and migration on HM.
Input problems.Weuse five task-parallel HPC applications: SpGEMM
and BFS are derived from high-performance math libraries. WarpX
is a production code for plasma simulation. DMRG comes from
Itensor and simulates quantum many-body systems. NWChem-TC
is the tensor contraction component in NWChem.

Figure 1 shows overall performance normalized to PM-only
(Optane-only). Merchandiser introduces 23.6%, 17.1%, and 15.4% per-
formance improvement on average (up to 37.8%, 26.0%, and 23.2%)
over PM-only, Memory Mode, and MemoryOptimizer respectively.
Compared with Memory Mode and MemoryOptimizer, Merchan-
diser reduces A.C.V (average coefficient of variation of execution
time across threads/processes) by 51.6% and 42.7% on average re-
spectively. The performance of PM only shows the load imbalance
from the applications themselves. We notice that using Merchan-
diser, A.C.V is reduced by 39.1% and 21.4% for SpGEMM and BFS,
compared with using PM-only. This indicates that Merchandiser
can even remove load imbalance in applications themselves.

REFERENCES
[1] Zhen Xie, Jie Liu, Jiajia Li, and Dong Li. 2023. Merchandiser: Data Placement on

Heterogeneous Memory for Task-Parallel HPC Applications with Load-Balance
Awareness. In Proceedings of the 28th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming.

2

	1 Introduction
	2 Overview of MD-HM
	3 Evaluation
	References

