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Summary of the RACER Architecture
• Resistive processing-using-memory (PUM) architectures
ØUse electrical interactions between interconnected memory cells to 

perform primitive computational functions
ØCan eliminate data movement b/w main memory, CPU

• Existing resistive PUM architectures’ performance scales proportionally with 
the crossbar size, but a crossbar cannot be larger than 200x200 cells
• RACER is a PUM architecture and ISA designed for small crossbars, and 

utilizes a novel bit-pipelining execution model
• 142x speedup, 233x energy savings vs. 16-core Xeon CPU 
• 15x speedup, 23x energy savings vs. 2304-shader NVIDIA GPU

Bit-Pipelining Execution Model

• Multiple small 64x64 crossbars (i.e., tiles) work 
in parallel to increase bit-serial throughput
• Each tile contains one bit of a w-bit word
• Buffers (1x64 crossbars) are added between 

tiles to enable inter-tile communication, which 
can connect to or disconnect from tiles through 
controllable pass gates
• Bit-serial computation repeats the same 

operations for each bit: we can reuse 
instructions by propagating them from tile to tile
• In the bit-pipelining execution model: tiles are 

pipeline stages, buffers are pipeline registers
• Bit-pipelining improves the throughput of a 

w-bit bit-serial operation by w
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Figure 1: Four tiles and three buffers are used to store 4-bit words 1101 (in red) and 
0110 (in blue)

Figure 2: Bit-pipelined ripple-carry addition, CX,Y is the carry bit of add operation X 
at bit position Y

In-Crossbar Logic Families
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Figure 3: (a) Resistive crossbar; (b) Voltage assertions to perform NOR in memory

• Resistive memory cells store information as different levels of resistance
• Asserting correct voltages on the crossbar’s column can realize whole-

column Boolean primitives (e.g., NOR)
• Changing the assertion voltage can change the logic primitives

Input Assertion 
Voltage (V)

Voltage Drop (V) Over Output When …

Input 000 Input 001 Input 011 Input 111

1 0 0.5 
(switched!)

0.67 
(switched!)

0.75 
(switched!)

0.75 0 0.38 0.5 
(switched!)

0.56 
(switched!)

0.67 0 0.34 0.45 0.5 
(switched!)

Extending RACER to Support Any Logic Family
• RACER’s Decode & Drive units act as interface between technology-

agnostic control/peripheral circuitry and technology-specific crossbars
• We formalize the assertion voltages to Vin, Vout, Vfloat, where a column in a 

crossbar is either
Ø Asserted with Vin if it is either Col. A or Col. B
Ø Asserted with Vout if it is either Col. C
Ø Asserted with Vfloat if they are not involved in the current micro-op

• Vin, Vout, Vfloat can change to support different logic families
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Figure 4: (a) RACER control circuitry decoupled from the pipeline by the decode & drive 
units; (b) micro-op fields; (c) decode units; (d) drive units
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OSCAR: Relaxing Device Switching Constraints

• MAGIC/FELIX
ØConstraints: 2Vreset<Vnor<Vset

• OSCAR NOR
ØConstraints: Vnor>4Vset

• OSCAR OR
ØConstraints: Vset<Vor<2Vreset

Figure 5: Device constraints of different 
logic families

Results

Improving the Compatibility and Manufacturability of Digital Architectures for 
Processing Using Resistive Memory

3-Input 
NOR

3-Input 
NAND

Table 1: Changing the assertion voltages results in different Boolean primitives 
(Kvantinsky+ 2014 and Gupta+ 2018)

A OutB(b)(a)

Input B OutputInput A

VnorVnor GND

Vfloat

Load

Vnor(+Δ) A OutB

Figure 6: (a) Voltage assertions for OSCAR NOR; (b) possible output transitions for 
NOR, with the blue arrow indicating output cell resistance switches

Video: MICRO’21 
RACER Architecture

Paper: MICRO’21 Paper: JETCAS’22 

Minh S. Q. Truong, Liting Shen, Alexander Glass, Alison Hoffmann, L. Richard Carley,
James A. Bain, Saugata Ghose† (Carnegie Mellon Univ., †Univ. of Illinois Urbana-Champaign)

• OSCAR increases RACER’s speedup and energy savings by 30% and 37% 
compared to RACER + MAGIC

• RACER + OSCAR achieves 142× speedup and 233× energy savings 
compared to a modern 16-core Xeon CPU

• OSCAR’s constraints are easier to realize on real resistive devices
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Figure 7: Speedup and energy savings normalized to MICRO’21 RACER results


