
Variable Coded Batch Matrix Multiplication
Lev Tauz, Debarnab Mitra, and Lara Dolecek

Department of Electrical and Computer Engineering, University of California, Los Angeles, USA
levtauz@ucla.edu, debarnabucla@g.ucla.edu , dolecek@ee.ucla.edu

Abstract—We introduce the novel Variable Coded Distributed
Batch Matrix Multiplication (VCDBMM) problem which generalizes
many previous coded distributed matrix multiplication problems by
allowing for matrix products to re-use matrices, thus creating natural
redundancy in the system. Inspired in part by Cross-Subspace
Alignment codes, we develop Flexible Cross-Subspace Alignment
(FCSA) codes that are flexible enough to utilize this natural
redundancy and provide a full characterization of FCSA codes
which allow for a wide variety of system complexities including good
straggler resilience and fast decoding. We theoretically demonstrate
that, under certain practical conditions, FCSA codes are within a
factor of 2 of the optimal solution in terms of straggler resilience.
Furthermore, simulations demonstrate that our codes can achieve
even better optimality gaps in practice, even going as low as 1.7.

I. INTRODUCTION AND SYSTEM MODEL

Large scale distributed matrix-matrix multiplication is a
fundamental component of modern data analytics and is used
to deal with the exponential rise of big data. The key idea is
that a system of workers each store a fraction of the total data
and perform local matrix multiplication that is then compiled
at a fusion node. While having a large number of workers
allows for theoretically better parallelization gains, the presence
of stragglers (i.e., workers that fail or are slow to respond)
significantly hampers distributed systems due to the increase in
tail latency [1]. Stragglers can arise for a variety reasons such
as variable communication delay due to a shared network or
heterogeneity in processing time due to different life cycles of
storage mediums (such as non-volatile memories) used at each
worker. The major issue with stragglers is that many distributed
tasks are designed such that all worker results are required to
get the final result which is clearly slowed down by stragglers.
To mitigate stragglers, coded computation is a methodology
that injects computational redundancy through the use of error-
correcting codes which allows for the final result to be extracted
from a subset of the worker results [2]–[5].

Codes for matrix-matrix computations are broadly separated
into two problem spaces: i) matrix partitioning for computing
a single computation task [2], [3], [6], and ii) batch processing
of multiple distinct computation tasks [4], [5]. We can sum-
marize one example of problem space (i) as using coding to
determine the product AB by coding across the row partition
AT = (AT

i)
n
i=1 and the column partition B = (Bi)

m
i=1

to determine (AiBj)
n,m
i=1,j=1 [2] (note that the partitions are

matrices). Similarly, we summarize problem space (ii) by a
system that receives two lists of matrices (Ai)

p
i=1, (Bi)

p
i=1 and

the goal is to use coding to determine (AiBi)
p
i=1 [4], [5]. While

state-of-the-art codes for these problem spaces provide near
optimal straggler resilience, ultimately they rely on the rigid
structure of the computation tasks they aim to compute and are
hard to extrapolate to more variable tasks. For example, a variable
computation task could require the following matrix products
(A1B1,A1B2,A2B2,A2B3) which is clearly not well suited to
the previous two problem spaces. An example of such a variable
task in practice is when a group of users, such as mobile devices,
who each have their own data (Ai), want to perform some
computation (matrix multiplication) on data stored in the cloud
(Bj). It is reasonable that user requests may have significant

S = {(i1, j1), . . . (i|S|, j|S|)}

A = (A1, . . . ,ALA
)

Source A

B = (B1, . . . ,BLB
)

Source B

Worker 1

...
Worker n

...
Worker m

...
Worker K

Ã1

Ãn

Ãm

ÃK

B̃1

B̃n

B̃m

B̃K

Fusion

C̃1

C̃n

C̃m

C̃K

(AiBj : (i, j) ∈ S)

Only R results downloaded

Fig. 1: System Model for Variable Coded Distributed Batch Matrix Multiplication
with a recovery threshold of R.

overlap and utilizing this redundant overlap can improve the
throughput of the system.

In this work, we present the Variable Coded Distributed Batch
Matrix Multiplication (VCDBMM) problem that generalizes the
two stated problem spaces. Assume that a distributed system is
provided with two sets of matrices A = {A1, . . . ,ALA

} and
B = {B1, . . . ,BLB

} such that Ai ∈ Fα×β and Bj ∈ Fβ×γ and
a set of computation goals S = {(i1, j1), . . . (i|S|, j|S|)}. The
objective is to calculate the product AiBj for every (i, j) ∈ S.
Fig. 1 provides an overview of the system model of VCDBMM
where there are K workers and A and B are located at two
sources A and B, respectively. Each source encodes the data
stored within itself and sends it to a worker node. The worker
nodes perform a simple matrix product of its inputs and provides
its output to a fusion node. Due to the presence of stragglers,
only some of the worker results are received by the fusion
node. An important metric to measure how resilient a system
is to stragglers is the recovery threshold which is the minimum
number of worker outputs needed to recover the desired results.

Our goal is to demonstrate a coding scheme that has a low
recovery threshold with minimal overhead. We achieve this
through Flexible Cross-Subspace Alignment (FCSA) codes that
take advantage of the redundancy in the VCDBMM problem to
provide straggler resilience.

Due to limited space, the following sections are shortened from
our long version [7] and we do not provide a full description of
FCSA codes. We refer readers to the long version for detailed
background and derivation of equations.

Notation: Let boldface capital letters represent matrices. Let [n]
denote the set {1, 2, . . . , n}. Given two sets A and B, A×B is the
Cartesian product of the two sets. The notation Õ(a log2 b) sup-
presses poly-log terms, i.e., Õ(a log2 b) = O(a log2 b log log(b)).

II. FLEXIBLE CROSS-SUBSPACE ALIGNMENT CODES
First, we define two constructs that we use to succinctly

describe FCSA codes.

Definition 1. For a given computation list S, we define a task
assignment Q as a set of tuples Q = {(Lq

A,Lq
B)}

|Q|
q=1 where

Lq
A ⊆ [LA],Lq

B ⊆ [LB] are chosen such that for every s ∈ S
there exists exactly one q ∈ [|Q|] such that s ∈ Lq

A×Lq
B . Define

L
(q)
A = |Lq

A| and L
(q)
B = |Lq

B |.
Now, given a task assignment Q, we define a power as-

signment P as a tuple of vectors of non-negative integers
P = {(PA,q, PB,q)}|Q|

q=1. Let PA,q
i (PB,q

j) be the ith (jth) element
in PA,q (PB,q). The power assignment P must satisfy the
following constraints for all q ∈ [|Q|]:

B1 B2 B3

A1 1 1 0
A2 0 1 1

Group 1
Group 2

(a) VCDBMM problem

L1
A = {1}

L1
B = {1, 2}

Group 1

L2
A = {2}

L2
B = {2, 3}

Group 2

(b) Task Assignments

PA,1 = [2, 0]

PB,1 = [2, 1, 0]

Group 1

PA,2 = [0, 2]

PB,2 = [0, 1, 2]

Group 2

(c) Power Assignments

Fig. 2: An example FCSA code with a task and power assignment which results
in a recovery threshold of 5 for m = p = n = 1 (R1,1,1 = 1) while the best
recovery threshold using other codes is 6, under the same communication costs.

1) {PA,q
i +PB,q

j −L
(q)
A L

(q)
B : (i, j) ∈ Lq

A×Lq
B} is a permutation

of the set [L(q)
A L

(q)
B].

2) PA,q
i + PB,q

j ≤ L
(q)
A L

(q)
B for all (i, j) ̸∈ Lq

A × Lq
B

We provide an explicit construction of power assignments in
the full version [7] that satisfy the constraints. Using the task and
power assignment constructs, we provide a full characterization
of FCSA codes in the following theorem.
Theorem 2. Assume that a task assignment Q and power assign-
ment P are provided. Additionally, parameters m, p, n ∈ Z> are
provided such that m|α, p|β, and n|γ. Let R = Rm,p,n denote
the bilinear complexity1 of multiplying an m-by-p matrix and a
p-by-n matrix and let ρ > 0 be a parameter such that ρ|R. If
|F|> Rm,p,n|Q|+K, FCSA codes achieve the following:

Recovery Threshold: R̃ = (R+ ρ)

|Q|∑
q=1

L
(q)
A L

(q)
B

− min
i∈[LA]

 |Q|∑
q=1

PA,q
i

− min
j∈[LB]

 |Q|∑
q=1

PB,q
j

+ 1

Source A Upload Cost:
Rαβ

ρmp
, Source B Upload Cost:

Rβγ

ρpn

Download Cost:
αγ

mn
,Worker Complexity: O

(
R

ρ
· αβγ
mpn

)
Source A Encoding Complexity: O

(
αβLAR(

K

mp
+ 1)

)
,

Source B Encoding Complexity: O
(
βγLBR(

K

np
+ 1)

)
,

Decoding Complexity: O(αγR|S|+ αγ

mn
R

|Q|∑
q=1

(L
(q)
A L

(q)
B)2)

+ Õ(
αγ

mn
R̃ log2(R̃)).

Fig. 2 provides a small example of a valid task and power
assignment from which we can calculate all the necessary metrics.
At a high level, FCSA codes group up matrices in A and B
such that all matrix pairs in that group are retrievable due to
alignment in a decodable subspace while other matrix terms are
compounded in a garbage subspace. Power assignment reduces
the sizes of these subspaces which lowers the recovery threshold.

III. NUMERICAL ANALYSIS OF RECOVERY THRESHOLD
From Theorem 2, we can see that FCSA codes provide a

variety of operating points for a system to choose from. Now, we
analyze the optimality of the recovery threshold of FCSA codes
by providing a lower bound on the optimal recovery threshold.
Theorem 3. For a fixed download cost of αγ

nm , then the optimal
recovery threshold R∗

S satisfies R∗
S ≥ mn|S|.

The key idea to prove this lower bound is utilizing mutual
information to lower bound the number of symbols needed to
sufficiently describe the desired result. Using Theorem 3, we

1See [8] for a description of bilinear complexity. While the bilinear complexity
is not known for all m, p, n, there are many well known constructions that
achieve an upper bound on the bilinear complexity and Rm,p,n is known to be
sub-cubic in its parameters [4].

0.1 0.2 0.3

1.70

1.75

1.80

1.85

1.90

1.95

2.00

Fa
ct

or
 o

f O
pt

im
al

ity
 o

f R
ec

ov
er

y
Th

re
sh

ol
d

LA = 25, LB = 20

Baseline
T1-FCSA
T2-FCSA

0.1 0.2 0.3

LA = 50, LB = 10

0.1 0.2 0.3

LA = 100, LB = 5
Factor of Optimality for Varying

Fig. 3: GLA,LB ,λ for the Vλ(LA, LB) ensemble with different LA and LB

and varying values of λ.
can analyze how close FCSA codes are to the optimal recovery
threshold. Next, we provide two subclasses of FCSA codes named
Type-1 (T1) FCSA and Type-2 (T2) FCSA codes by explicitly
stating their task assignment which allows for a simple expression
for their recovery threshold (see [7] for explicit construction).
The next theorem shows that both these subclasses achieve a
recovery threshold within a multiplicative factor of 2.
Theorem 4. Let RT1

FCSA and RT2

FCSA be the recovery thresholds
of T1-FCSA and T2-FCSA codes, respectively. For a fixed
download cost of αγ

nm , RT2
FCSA ≤ RT1

FCSA ≤ 2R∗
S .

We note that the codes provided in [4] can also achieve a
multiplicative factor of optimality of 2 for VCDBMM. The
major difference is that this bound is quite tight for the codes
in [4] while we can empirically show that FCSA codes can
achieve an even better recovery threshold then the bound implies.
Additionally, we note that while T2-FCSA codes have a better
recovery threshold than T1-FCSA codes, T1-FCSA codes have
a simpler decoding complexity [7]. Thus, we will compare the
recovery thresholds of both types of FCSA codes.

We now provide a numerical analysis of the average multi-
plicative factor of optimality for T1-FCSA and T2-FCSA codes,
i.e. the average value of the recovery threshold divided by
the lower bound. This average is taken over an ensemble of
VCDBMM problems where the number of matrices LA and LB

are fixed and each pair of matrices appears in S with probability
0 < λ < 1. For simplicity, we fix the download cost to be
αγ. We compare to a baseline recovery threshold which is the
lowest recovery threshold of the codes provided in [2], [5] with
equivalent communication costs. Fig 3 provides the results of
the experiments. As we can see, FCSA codes can achieve an
average multiplicative factor of optimality as low as 1.7. Other
experiments over different ensembles show similar results and
can be viewed in the full version [7]. Thus, FCSA codes are
well-suited to solve the VCDBMM problem.

REFERENCES

[1] J. Dean and L. A. Barroso, “The tail at scale,” Communications of the ACM,
2013.

[2] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Polynomial codes: an
optimal design for high-dimensional coded matrix multiplication,” in Proc.
Conf. on Neural Info. Proc. Systems (NIPS), 2017.

[3] S. Dutta et al., “On the optimal recovery threshold of coded matrix
multiplication,” IEEE Trans. on Info. Theory, 2020.

[4] Q. Yu and A. S. Avestimehr, “Entangled polynomial codes for secure, private,
and batch distributed matrix multiplication: Breaking the" cubic" barrier,” in
Proc. IEEE Int. Symp. on Info. Theory (ISIT), 2020.

[5] Z. Jia and S. A. Jafar, “Cross subspace alignment codes for coded distributed
batch computation,” IEEE Trans. on Info. Theory, 2021.

[6] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Straggler mitigation in
distributed matrix multiplication: Fundamental limits and optimal coding,”
IEEE Trans. on Info. Theory, 2020.

[7] L. Tauz and L. Dolecek, “Variable coded batch matrix multiplication,” IEEE
Journal on Selected Areas in Information Theory, 2022.

[8] M. Bläser, “Fast matrix multiplication,” Theory Comput., 2013.

