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Kernel Software is Becoming the Bottleneck for Storage

Kernel Software Account for ~50% of the Where Does the Latency Come From?
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Kernel Bypass is Not a Panacea Offload Functions to the Kernel
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Using In-Kernel Functions to Accelerate Storage Engines
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We integrate XRP with BPF-KV and WiredTiger NVMe Queue 0 NVMe Queue 1
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