XRP: In-Kernel Storage Functions with eBPF

Yuhong Zhong', Haoyu Li', Yu Jian Wu', loannis Zarkadas', Jeffrey Tao', Evan Mesterhazy/,
Michael Makris', Junfeng Yang', Amy Tai?, Ryan Stutsman3, and Asaf Cidon'

'Columbia University 2Google 3 University of Utah

Kernel Software is Becoming the Bottleneck for Storage

Kernel Software Account for ~50% of the Where Does the Latency Come From?

Latency on Fast Storage Devices User Space

Average Read Latency Breakdown Application

100% Kernel o
o Syscall Layer Boundaryl =~ 0.4 ps (5.6%)
75(%) } 0.2 |.IS(32%)
5 . Rardware Kernel File System and Block Layer
50% Software 2.4 ps (38.0%)
Kernel
250 ~ENO Software
5% 50%]- 0.1 us (1.8%)
0% .
Storage Device
NAND Optane SSD Optane SSD Hardware 3.2 s (51.4%)
SSD (Gen 1) (Gen 2)

Kernel Bypass is Not a Panacea Offload Functions to the Kernel

__ Does not incur the overhead of the User Space

User Space
kernel storage stack

Application Application

Kernel 0 - oo X No fine-grained access control Kernel
Syscall Layer Boundary| 77 04 1 (56%) . . . Potentially Syscall Layer Boundary
Reduce 02ps (3.2%) | X X Requires busy polling for completion reduce read
read : — \ , latency by

iatonc File System and Block Layer) 4 e (38,00 ® % Processes cannot yield CPU up to 47% File System and Block Layer
by 199, 4us (38.0%) | = when waiting for 1/0

<

]. 0.1 us (1.8%) § CE_U cycles are wasted when /0
7 utilization is low

3.2 ps (51.4%)

Storage Device i
(Managed by User Space, Interrupt Disabled) X CPU cannot be shared efficiently Storage Device I
among multiple processes

Using In-Kernel Functions to Accelerate Storage Engines

In-Kernel Functions Can Accelerate B+ Tree Index Lookup XRP Architecture
Application
User Space — —
Syscall Function
Kernel Boundary (5.6%)
Syscall Layer) File System
2 c 2 3.2%
S, 3, 59 Only traverse) Block Laver
File System and Block Layer z5 e s the full kernel J
e 3 software stack 38.0% NVMe Driver
once l
Completion Completion Completion
Custom Function Interrupt Handler Interrupt Handler Interrupt Handler
Per-Request Context Per-Request Context Per-Request Context
Storage Device v V \ 1 bpf func 0, bpf func 1, bpf func n,
51.4% scratch buff O, scratch buff 1, scratch buff n,
' | .
Prepare NVMe Prepare NVMe Prepare NVMe
R esu Its command command / command
)))
Metadata Digest
BPF-KV Throughput (Uniform Random Read) BPF-KV Tail Latency (Uniform Random Read) 1 > aT 99
— : : 1
S 300 : 10*{ —#— read gzlu:"ber of Call BPF Call BPF Call BPF
3 T:/LT | —m— XRP s e Function Function Function
§ > 1 | |
5 © 5 Call Interrupt Handler
= c Resubmit for Each Irq
2100+ &5 NVMe
o ! o 102 - Command Completion
= : Number of o ' Interrupt
0 | | iCores | | | ; NVMe Device |
1 2 3 4 5 6 7 8 9 1011 12 1 2 3 4 5 6 7 8 9 10 11 12 \ '§"’~‘ '26\"~‘
Number of Threads Number of Threads
—~ g &K/ SN I/AVY,
We integrate XRP with BPF-KV and WiredTiger NVMe Queue 0 NVMe Queue 1

http://xrp-project.com/

http://xrp-project.com/

