
XRP: In-Kernel Storage Functions with eBPF

Yuhong Zhong1, Haoyu Li1, Yu Jian Wu1, Ioannis Zarkadas1, Jeffrey Tao1, Evan Mesterhazy1,
Michael Makris1, Junfeng Yang1, Amy Tai2, Ryan Stutsman3, and Asaf Cidon1

1Columbia University, 2Google, 3University of Utah

With the rise of new high performance memory technolo-
gies, such as 3D XPoint and low latency NAND, new NVMe
storage devices can now achieve up to 7 GB/s bandwidth and
latencies as low as 3 µs [2–4]. At such high performance,
the kernel storage stack becomes a major source of overhead
impeding both application-observed latency and IOPS. For
the latest 3D XPoint devices, the kernel’s storage stack dou-
bles the I/O latency, and it incurs an even greater overhead
for throughput. As storage devices become even faster, the
kernel’s relative overhead is poised to worsen.

Existing approaches to tackle this problem tend to be
radical, requiring intrusive application-level changes or new
hardware. Complete kernel bypass through libraries such as
SPDK [10] allows applications to directly access underlying
devices, but such libraries also force applications to imple-
ment their own file systems, to forgo isolation and safety, and
to poll for I/O completion which wastes CPU cycles when
I/O utilization is low. Others have shown that applications
using SPDK suffer from high average and tail latencies and
severely reduced throughput when the schedulable thread
count exceeds the number of available cores [8].

In contrast to these approaches, we seek a readily-
deployable mechanism that can provide fast access to emerg-
ing fast storage devices that requires no specialized hardware
and no significant changes to the application while working
with existing kernels and file systems. To this end, we rely
on BPF (Berkeley Packet Filter [9]) which lets applications
offload simple functions to the Linux kernel [1]. Similar to
kernel bypass, by embedding application-logic deep in the
kernel stack, BPF can eliminate overheads associated with
kernel-user crossings and the associated context switches. Un-
like kernel bypass, BPF is an OS-supported mechanism that
ensures isolation, does not lead to low utilization due to busy-
waiting, and allows a large number of threads or processes to
share the same core, leading to better overall utilization.

The support of BPF in the Linux kernel makes it an attrac-
tive interface for allowing applications to speed up storage
I/O. However, using BPF to speed up storage introduces sev-
eral unique challenges. Unlike existing packet filtering and

tracing use cases, where each BPF function can operate in a
self-contained manner on a particular packet or system trace
— for example, network packet headers specify which flow
they below to — a storage BPF function may need to syn-
chronize with other concurrent application-level operations
or require multiple function calls to traverse a large on-disk
data structure, a workload pattern we call “resubmission” of
I/Os. Unfortunately the state required for resubmission such
as access-control information or metadata on how individual
storage blocks fit in the larger data structure they belong to is
not available at lower layers.

To tackle these challenges, we design and implement XRP
(eXpress Resubmission Path) [11], a high-performance stor-
age data path using Linux eBPF. XRP is inspired by XDP, the
recent efficient Linux eBPF networking hook [6]. In order
to maximize its performance benefit, XRP uses a hook in
the NVMe driver’s interrupt handler, thereby bypassing the
kernel’s block, file system and system call layers. This allows
XRP to trigger BPF functions directly from the NVMe driver
as each I/O completes, enabling quick resubmission of I/Os
that traverse other blocks on the storage device.

The key challenge in XRP is that the low-level NVMe
driver lacks the context that the higher levels provide. Those
layers contain information such as who owns a block (file
system layer), how to interpret the block’s data, and how to
traverse the on-disk data structure (application layer).

Our insight is that many storage-optimized data structures
that power real-world databases [5, 7] – such as on-disk B-
trees, log-structured merge trees, and log segments – are typi-
cally implemented on a small set of large files, and they are
updated orders of magnitude less frequently than they are
read. Hence, we exclusively focus XRP on operations con-
tained within one file and on data structures that have a fixed
layout on disk. Consequently, the NVMe driver only requires
a minimal amount of the file system mapping state, which we
term the metadata digest; this information is small enough
that it can be passed from the file system to the NVMe driver
so it can safely perform I/O resubmissions. This allows XRP
to safely support some of the most popular on-disk data struc-
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Figure 1: Tail latency and throughput of XRP and SPDK against
read and io_uring with BPF-KV with random key lookups.

tures.
We present a design and implementation of XRP on Linux,

with support for ext4, which can easily be extended to other
file systems. XRP enables the NVMe interrupt handler to
resubmit storage I/Os based on user-defined BPF functions.

We augment two key-value stores with XRP: BPF-KV, a
B+-tree based key-value store that is custom-designed for
supporting BPF functions, and WiredTiger’s log-structured
merge tree, which is used as one of MongoDB’s storage en-
gines [5]. With random 512 B object reads on BPF-KV with
multiple threads using a B+-tree that has six index levels on
disk, XRP has 61%–120% higher throughput and 16%–41%
lower p99 latency than read() (Figure 1). XRP also enables
more efficient sharing of cores among applications than kernel
bypass: it is able to provide 30% better throughput than SPDK
with two threads sharing the same core. In addition, XRP is
able to consistently improve WiredTiger’s performance by up
to 24% under YCSB.

We make the following contributions.

1. New Datapath. XRP is the first datapath that enables the
use of BPF to offload storage functions to the kernel.

2. Performance. XRP improves the throughput of a B-tree
lookup by up to 2.5× compared to normal system calls.

3. Utilization. XRP provides latencies that approach kernel
bypass, but unlike kernel bypass, it allows cores to be
efficiently shared by the same threads and processes.

4. Extensibility. XRP supports different storage use cases,
including different data structures and storage operations
(e.g., index traversals, range queries, aggregations).
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